ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Что такое геодезия


Тема: Общие сведения по геодезии. Предмет геодезии



Лекция 1

1. Что такое геодезия

_______ Геодезия – это наука об измерениях на земной поверхности, выполняемых для изучения общей фигуры Земли, для составления планов и карт, для решения инженерных задач при изысканиях, проектировании, строительстве и эксплуатации инженерных сооружений.

_______В процессе своего развития геодезия разделилась на ряд самостоятельных научных дисциплин: высшую геодезию, топографию, инженерную геодезию, аэрофотогеодезию, картографию и космическую геодезию.

_______Высшая геодезия занимается определением фигуры и размеров всей Земли и значительных ее частей.

_______Топография занимается измерением и изображением на планах и картах земной поверхности.

_______Инженерная геодезия занимается вопросами геодезических работ при изысканиях, проектировании, строительстве и эксплуатации инженерных сооружений, при монтаже оборудования, при наблюдениях за вертикальными и горизонтальными смещениями инженерных сооружений и технологического оборудования.

_______Аэрофотогеодезия занимается изучением методов и средств создания топографических карт и планов по материалам фотографирования Земли.

_______Картография занимается изучением методов составления, издания и использования карт.

_______Космическая геодезия занимается обработкой измерений, полученных при помощи искусственных спутников Земли, орбитальных станций и межпланетных кораблей.

_______Геодезия имеет тесную связь с другими научными дисциплинами: математикой, астрономией, физикой, механикой, автоматикой, электроникой, географией, фотографией и черчением.

2. Предмет геодезии. Понятие о форме и размерах Земли

_______Предметом геодезии является планета Земля. Общая площадь Земли – 510 млн. км2; 71% поверхности Земли – это моря и океаны, 29% – суша. При определении положения точек земной поверхности обычно относят их к общей фигуре Земли, которую называют геоидом.

_______Геоид – это геометрическое тело, ограниченное уровенной поверхностью.

_______Уровенная поверхность – поверхность, совпадающая с поверхностью воды в морях и океанах, которые находятся в спокойном состоянии, продолженная под материками.

_______Уровенная поверхность в каждой своей точке перпендикулярна к отвесной линии, проведенной через эту точку.

_______Фигура геоида в геометрическом отношении является весьма сложной, однако она очень близка к эллипсоиду вращения. Такой эллипсоид получается в результате вращения вокруг малой полуоси эллипса РQP1Q1 (рис. 1).

_______Эти величины определяют форму и размеры Земли. В 1946 году были приняты размеры земного эллипсоида, вычисленные группой российских ученых под руководством профессора Ф.Н. Красовского. Эти размеры: а = 6378245 м и b = 6356863 м.

3. Способы изображения земной поверхности. Метод проекций в геодезии

_______На местности точки, линии, углы и контуры расположены в силу неровностей земной поверхности на возвышениях или впадинах. Так как возвышения и впадины являются пространственными формами, изобразить их на бумаге в виде плоской карты или плана достаточно непросто. Способы изображения земной поверхности на плоскости основываются на методе проекций.

_______При изучении действительной поверхности Земли точки местности проецируют отвесными линиями на поверхность земного эллипсоида. Так как уровенная поверхность радиусом до 20 км может быть заменена плоскостью, при относительно небольших площадях, точки местности проецируют на горизонтальную плоскость. Положение полученных проекций точек может быть определено координатами.

_______В результате перенесения точек на плоскость длины линий заменяют их горизонтальными проекциями, называемыми горизонтальными проложениями; пространственные углы заменяются плоскими, и вся фигура заменяется проекцией на горизонтальную плоскость (рис. 2).

4. Системы координат, принятые в геодезии

_______В геодезии применяются следующие системы координат:
• Географическая система координат,
• Зональная система плоских прямоугольных координат Гаусса–Крюгера,
• Полярная система координат.

4.1. Географические координаты

_______С помощью географических координат, то есть широт (φ) и долгот (λ), определяют положение точки относительно экватора и начального меридиана.

_______Широтой (φ) точки называется угол, составленный отвесной линией в данной точке и плоскостью экватора.

_______Долготой (λ) точки называется двугранный угол между плоскостью меридиана данной точки и плоскостью начального меридиана.


_______Широта отсчитывается по дуге меридиана к северу и к югу от экватора от 0° до 90°. К северу от экватора широта называется северной, к югу – южной.

_______Долгота отсчитывается от меридиана, проходящего через Гринвич на окраине Лондона. Долгота отсчитывается по дуге экватора или параллели от начального меридиана в сторону востока и запада от 0° до 180°. Долгота к востоку от Гринвичского меридиана называется восточной долготой, к западу – западной. Широты и долготы определяют положение любой точки на земной поверхности и выражаются в угловой мере. Географические координаты определяются из астрономических наблюдений и, а также с помощью геодезических измерений.

4.2. Зональная система плоских прямоугольных координат Гаусса–Крюгера

_______При геодезических работах на больших территориях применяется зональная система плоских прямоугольных координат Гаусса–Крюгера (рис. 4). Для этого земной шар делится меридианами на шестиградусные или трехградусные зоны (рис. 3). Счет зон ведется к востоку от Гринвичского меридиана. Каждая зона проецируется на плоскость таким образом, чтобы средний меридиан зоны был изображен прямой линией. Средний меридиан зоны называется осевым меридианом.

_______Изображение осевого меридиана принимается за ось абсцисс (x), изображение экватора – за ось ординат (y). За начало координат принимают точку пересечения осевого меридиана с экватором.

_______Чтобы не иметь отрицательных ординат, ординату осевого меридиана принимают равной 500 км. Перед ординатой точки указывается номер зоны, в которой точка расположена.

Зональная система плоских прямоугольных координат Гаусса–Крюгера


_______Зная географические координаты точки земной поверхности, можно вычислить зональные прямоугольные координаты, и, наоборот.

4.3. Полярная система координат

_______В полярной системе координат используются полярные углы и расстояния. Подробнее эта система будет рассмотрена в последующих лекциях.

5. Системы высот, принятые в геодезии

_______Для полного определения положения точек земной поверхности необходимо знать высоты точек над принятой уровенной поверхностью. Высоты точек, которые определяются относительно поверхности эллипсоида (по отвесной линии), называются абсолютными высотами.

_______Абсолютная высота – длина перпендикуляра, опущенного из точки на уровенную поверхность, принятую за начало отсчета (поверхность эллипсоида).

_______За начало счета абсолютных высот принимается нуль Кронштадтского футштока (средний уровень воды в Балтийском море). Такая система высот называется Балтийской.

_______Уровень Балтийского моря установленный по данным многолетних наблюдений и отмеченный награвированной чертой на металлической пластине, вмурованной в гранитный устой одного из мостов через обводной канал в Кронштадте, является началом счета высот уже третий век. Если счет высот ведется от другой уровенной поверхности, такая высота называется относительной высотой.


_______Числовые значения абсолютных высот точек земной поверхности называют отметками. Разность абсолютных высот двух любых точек называют превышением (h).
_______В строительстве для отдельных зданий счет высот ведется от чистого пола первого этажа.

6. Ориентирование линий

_______Ориентировать линию – значит определить ее направление относительно исходного меридиана.

_______В качестве исходного направления служит меридиан начальной точки линии, или осевой меридиан зоны. Для ориентирования линий служат углы, называемые азимутами, дирекционными углами и румбами.

_______Азимутом - горизонтальный угол, отсчитываемый от северного направления меридиана по ходу часовой стрелки до направления данной линии.

_______Азимуты изменяются от 0º до 360º.

_______Азимутом называется истинным, если он отсчитывается от истинного меридиана, и магнитным, если отсчитывается от магнитного меридиана. Направление истинного меридиана в данной точке определяется из астрономических наблюдений, а направление магнитного меридиана – при помощи магнитной стрелки.

_______Азимут одной и той же линии в разных ее точках различен. Меридианы разных точек не параллельны между собой, так как они сходятся в точках полюсов. Отсюда азимут линии в разных ее точках имеет разное значение. Угол между направлениями двух меридианов называется сближением меридианов и обозначается γ. _______Для определения положения магнитного меридиана в геодезии применяют буссоль. Буссоль применяется в комплекте геодезических приборов (теодолитов, тахеометров и т.д.)
_______Для перехода от магнитного азимута к истинному надо знать величину и название склонения магнитной стрелки δ. Склонение магнитной стрелки указывается в зарамочном оформлении листа топографической карты. _______В зональной системе координат Гаусса-Крюгера за исходное направление принимается осевой меридиан зоны, поэтому для ориентирования используют дирекционные углы.

_______Дирекционным углом называется горизонтальный угол, отсчитываемый от северного направления осевого меридиана или линии ему параллельной по часовой стрелке до направления данной линии. Обозначается буквой α.

_______Дирекционные углы бывают прямыми и обратными (рис.10).

_______Обратный дирекционный угол вычисляется по формуле:

_______Румбом называется острый угол, отсчитываемый от ближайшего направления осевого меридиана (северного или южного) до данной линии (r).
Румб всегда сопровождается названием четверти, в которой расположена линия (рис. 11).


7. Съемки

_______Для составления планов и карт необходимо на местности производить геодезические измерения. Комплекс таких измерений называется съемкой.

В зависимости от приборов и методов работы съемка бывает теодолитной, тахеометрической, фототопографической и т.д.
Геодезические измерения, выполняемые на местности, называют полевыми работами. Обработка результатов измерений, вычислений и графические работы по составлению карт и планов называют камеральной обработкой полевых измерений. Тест
    Инструкция по прохождению теста
  • Выберите один из вариантов в каждом из 10 вопросов;
  • Нажмите на кнопку "Показать результат";
  • Скрипт не покажет результат, пока Вы не ответите на все вопросы;
  • Загляните в окно рядом с номером задания. Если ответ правильный, то там (+). Если Вы ошиблись, там (-).
  • За каждый правильный ответ начисляется 1 балл;
  • Оценки: менее 5 баллов - НЕУДОВЛЕТВОРИТЕЛЬНО, от 5 но менее 7.5 - УДОВЛЕТВОРИТЕЛЬНО, 7.5 и менее 10 - ХОРОШО, 10 - ОТЛИЧНО;
  • Чтобы сбросить результат тестирования, нажать кнопку "Сбросить ответы";
  1. Геодезия это-
    Наука, которая изучает мир и все, что его окружает.
    Наука о изучение минеральных веществ, полезных ископаемых и частиц.
    Наука об измерениях на земной поверхности, выполняемых для изучения общей фигуры Земли, для составления планов и карт, для решения инженерных задач при изысканиях, проектировании, строительстве и эксплуатации инженерных сооружений.
  2. Какая наука занимается изучением методов составления, издания и использования карт?
    Высшая геодезия
    Картография
    Аэрография
  3. В геодезии НЕ применяются системы координат:
    Географическая система координат
    Зональная система плоских прямоугольных координат Гаусса– Крюгера
    Математическая система координат
    Полярная система координат
  4. Географической координатой называется?
    Широта и долгота
    Высота и долгота
    Широта и высота
  5. Что такое Абсолютная высота?
    Расстояние от точки до указанной прямой
    Расстояние от точки до уровня земли
    Длина перпендикуляра, опущенного из точки на уровенную поверхность, принятую за начало отсчета
  6. Что принимается за начало отчета абсолютных высот?
    Нуль Кронштадтского футштока
    Любая точка на поверхности Земли
    Начало измерямой линии
  7. Что означает "ориентировать линию" ?
    Нарисовать ее
    Определить направление относительно исходного
    Найти угол между линей и поверхностью
  8. Горизонтальный угол, отсчитываемый от северного направления осевого меридиана или линии ему параллельной по часовой стрелке до направления данной линии - это ...
    Дирекционный угол
    Угол наклона
    Румб
  9. Острый угол, отсчитываемый от ближайшего направления осевого меридиана (северного или южного) до данной линии - это ...
    Дирекционный угол
    Угол наклона
    Румб
  10. Какой вид сьемки не используется в геодезии?
    Теодолитная съемка
    Видео съемка
    Тахеометрическая съемка
    

Что такое геодезия, основные виды и задачи геодезических работ в строительстве


Что такое геодезия в современном понимании? Геодезия – это крупная научная отрасль, которая изучает методы и способы землемерия и определения формы и размеров участков местности.

Учёные геодезисты занимаются самыми разнообразными вопросами – от строительных задач, до нанесения на карту материков и островов.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Согласно действующей терминологии, геодезия – определение локализации объекта, его размеров и формы на земной поверхности. Эта наука имеет тесную связь с математикой, физикой и геометрией. Благодаря геодезии создаются системы координат, строятся так называемые геодезические сети, определяются точки на поверхности земли.

Основные разновидности и задачи геодезии

Существуют основные разновидности геодезии:

  1. Топография – описание поверхности земли.
  2. Прикладная геодезия – это инженерная геодезия, применяемая в строительстве. Включает в себя технологию и организацию проведения работ для решения инженерных и строительных задач.
  3. Гидрография – разновидность геодезии, изучающая водные пространства.
  4. Высшая геодезия — это наука, которая включает в себя методы высокоточных геодезических измерений.
  5. Аэрофотогеодезия – методики создания карт с помощью аэрофотосъёмок.
  6. Маркшейдерское дело – разновидность геодезии, включающая в себя строительство тоннелей и горнодобывающую индустрию.
  7. Астрономогеодезия – это наука, исследующая определение на планетах искусственных и естественных объектов. Все нужные исследования проводятся с использованием высоких технологий.
  8. Кадастр – учёт и оценка объектов инженерной деятельности и природных ресурсов.

К перечню основных задач геодезии при проектировке и подготовительных действиях инженерного характера относятся:

  1. Инженерные геодезические расчёты, направленные на проектирование зданий и сооружений.
  2. Геодезические расчёты для создания проектировочной документации.
  3. Разбивочные работы в процессе строительства – создание разбивочной основы на местности, вынос осей здания в натуру, детальные разбивки.
  4. Геодезические сверки при монтаже или завершении строительства.
  5. Контроль за строительным процессом и эксплуатацией объекта, дальнейшее наблюдение за его возможной деформацией.
  6. Проведение исполнительных съёмок в процессе строительной деятельности.

Прикладная геодезия

Данные, полученные геодезистами, применяются в навигации, картографии, землепользовании. К примеру, их можно использовать для определения зоны затопления при строительстве плотины. Кроме того, геодезия позволяет определять точное положение различных административных и государственных границ. Большое значение имеет геодезия в строительстве, навигации и создании стратегических систем.

Геодезические исследования широко применяются для изучения тектонических движений в сейсмологии с применением высоких технологий и оборудования.

Геодезические работы

Существует большое количество определений того, что такое геодезические работы.

Подобные действия наиболее часто проводятся в процессе строительства зданий и гидротехнических сооружений. Этот вид работ проводится обычно в два этапа:

  1. Полевые работы, которые проводятся на местности.
  2. Камеральные работы – это обработка полученных на местности данных.

Геодезические работы в процессе строительства могут быть предварительными и попутными. Предварительными работами называются основополагающие операции, которые способствуют закладке будущего фундамента сооружения.

Параллельно с проведением строительных работ осуществляются наблюдения и контрольные замеры.

Существует несколько основных видов геодезических работ.

Топографогеодезические работы

Включают в себя выполнение картографических схем и определяют построение проекта строительства. При съёмке местности применяются строго определённые масштабы. Такие вычисления производятся при многоэтажных застройках, переустройстве крупных инженерно-строительных сооружений, проведении озеленительных работ в городских кварталах. Более высокое масштабирование используется для планирования небольших населённых пунктов, транспортных узлов и крупных промышленных предприятий.

Разбивочные работы

Эта разновидность работ предназначается для разработки и создания знаков, которые привязываются к государственной геодезической сети. Эти знаки расставляют и сохраняют на протяжении всего времени строительства, что позволяет обеспечить полевой контроль его качества. В процессе проведения разбивочных работ создаются специальные чертежи, которые привязываются к реальной местности. Далее осуществляется вынос в натуру – это закрепление ключевых пунктов на реальной местности. Результаты этих работ обычно передаются подрядчикам с сопроводительными записками, чертежами и маркировками.

Исполнительная съёмка

Эти работы производятся на протяжении всего процесса строительства. С помощью съёмок проводится контроль возводимого объекта и соответствие его положения плану объекта. Особого внимания требуют те части зданий и сооружений, которые отвечают за устойчивость объекта и соответствие проведённым разбивочным работам. Возможные отклонения сопоставляются с нормами и требованиями существующих ГОСТов. По результатам такой съёмки составляют акты приёма-передачи объектов.

Контроль за деформированием и смещаемостью возведённых сооружений

Эта разновидность работ проводится не только во время строительства, но и после его окончания. Принято различать несколько этапов такого мониторинга:

  1. Начальный в процессе возведения фундамента здания.
  2. Через каждые 5 этажей.
  3. Окончательный – по завершении строительных работ.
  4. Гарантийный.
  5. Эксплуатационный.

Мониторингу подлежат осадка здания, крен и прогиб фундамента, крен самой конструкции и крен частей от монолита. Осуществляется мониторинг влияния постройки на находящиеся рядом объекты и обратное влияние — соседних объектов на возводимый.

Съёмка подземных сетей

Поскольку существует колоссальное количество факторов способных повлиять на просадку здания, прогнозировать что-либо или давать гарантии в этом смысле практически невозможно. Именно поэтому необходимо осуществлять регулярный контроль и измерение состояния подземных сетей.

Контроль за состоянием подземных сетей производится с помощью съёмки, которая проводится с целью фиксации состояния всех коммуникаций – канализации, дренажа, колодцев и пр. Контролируются такие показатели, как уклон, диаметр, глубина, а также пересечение и стыковка узлов с другими элементами инженерной сети. По результатам такого обследования составляется ситуационный план.

Инструментарий и оборудование

В геодезии принято пользоваться несколькими профессиональными инструментами:

  1. Нивелир. Этот инструмент применяется в строительстве для измерения высоты точек объекта.
  2. Тахеометр. Этот прибор широко применяется в строительстве для измерения углов и высоты точек в пространстве.
  3. Теодолит. Это геодезический инструмент предназначен для измерения углов. Может быть как оптическим, так и электронным. Чтобы надёжно зафиксировать и установить инструмент, потребуется специальный штатив.

В современной геодезии чаще всего применяются электронные приборы, которые фиксируют данные и позволяют внести их в базу данных компьютера для последующей обработки.

Что такое геодезия, основные виды и задачи геодезических работ в строительстве

В широком смысле слова геодезия – это наука о измерениях земной поверхности. Она изучает земную кору-тектоника.

Геодезическое строительное сопровождение – это немного другая область применения знаний о земле. Оно необходимо для того, чтобы выбрать единственно правильное место под строительство здания, на котором оно будет стоять долго и не мешать окружающим строениям, а также инженерным сетям. Изыскания дают реальную оценку техногенных и природных условий строительной площадки.

Если быть немного точнее, то геодезические работы представляют собой сложный комплекс действий по разметке участка, указанию координат, анализу рельефа, привязке имеющихся на земле строений и других объектов к определенным точкам на оси координат. Выполнение работы сопровождается составлением подробных чертежей с пояснениями.

Организации, занимающиеся геодезическими работами, выдают клиентам результат проведенных изысканий в 2 видах:

  • цифровом;
  • бумажном.

Чаще всего архитектурные бюро, куда после будут передаваться чертежи, запрашивают их в обоих вариантах.

Геодезические работы тесно связаны с такими науками как физика и математика. Поэтому при выборе компании для выполнения технического задания на изыскания на своем участке необходимо обращать особое внимание на профессионализм сотрудников и используемое оборудование.

Геодезическая работа регламентируется посредством:

  • ГОСТов — 22651-77, 22268-76;
  • законодательных актов РФ — постановление Правительства Российской

Федерации от 25 марта 1996 г. № 351, ФЗ «О геодезии и картографии».
В списке приведены только основные документы, но в своей работе геодезисты ссылаются на более, чем 2 десятка нормативных актов.

Геодезия - это... Что такое геодезия?

геодезия

Геодезия Геоде́зия ( «деление земли», от «Земля» + «делю́») — одна из древнейших наук о Земле, точная наука о фигуре, гравитационном поле, параметрах вращения Земли и их изменениях во времени. Тесно взаимодействует с астрометрией в области изучения прецессии, нутации, движения полюса и скорости вращения Земли.

геодезия

ж.

1.Научная дисциплина, изучающая форму, размеры Земли и методы измерений на земной поверхности для отображения ее на планах и картах.

2.Учебный предмет, содержащий теоретические основы данной дисциплины.

3. разг.Учебник, излагающий содержание данного учебного предмета.

геодезия

( гр. geodaisla землеразделение) наука, изучающая форму и размеры земли, методы определения положения на земной поверхности точек, необходимых для обоснования топографических съемок, а также для осуществления различных инженерно-технических работ.

геодезия

ж.
1) Научная дисциплина, изучающая форму, размеры Земли и методы измерений на земной поверхности для отображения ее на планах и картах.
2) Учебный предмет, содержащий теоретические основы данной дисциплины.
3) разг. Учебник, излагающий содержание данного учебного предмета.

геодезия

[наука, изучающая форму и размеры земли, методы определения положения на земной поверхности точек, необходимых для обоснования топографических съемок, а также для осуществления различных инженерно-технических работ.

геодезия

наука о формах и размерах Земли и об измерении земельных площадей

геодезия

(от гео.. и греч. daio - разделяю), система наук об определении формы и размеров Земли и об измерениях на земной поверхности для отображения ее на планах и картах. Подразделяется на астрономогеодезию, изучающую фигуру и гравитационное поле Земли, а также теорию и методы построения опорной геодезической сети, топографию, прикладную геодезию и др. Геодезия связана с астрономией, геофизикой, космонавтикой, картографией и др. Возникла в глубокой древности. Широко используется при проектировании и строительстве сооружений, судоходных каналов, дорог.

геодезия

геодезия ж.
1) Научная дисциплина, изучающая форму, размеры Земли и методы измерений на земной поверхности для отображения ее на планах и картах.
2) Учебный предмет, содержащий теоретические основы данной дисциплины.
3) разг. Учебник, излагающий содержание данного учебного предмета.

геодезия

геодезии, мн. нет, ж. (от греч. geodaisia). Дисциплина, изучающая формы и размеры земли (высшая геодезия) и занимающаяся съемкой и измерением больших площадей земной поверхности (низшая геодезия).

геодезия

(греч. geodaisia, от ge - Земля и daio - делю, разделяю), наука об определении фигуры, размеров и гравитационного поля Земли и об измерениях на земной поверхности для отображения её на планах и картах, а также для проведения различных инженерных и народно-хозяйственных мероприятий. Название 'геодезия' ('землеразделение') указывает на те первоначальные практические задачи, которые обусловили её возникновение, но не раскрывает её современных научных проблем и практических задач, связанных с разнообразными потребностями человеческой деятельности. Основные задачи геодезии. При определении фигуры и размеров Земли в Г. исходят из понятия об уровенных поверхностях Земли, т. е. о таких поверхностях, на каждой из которых потенциал силы тяжести имеет всюду соответствующее постоянное значение и которые пересекают направления отвесной линии под прямым углом. Направление отвесной линии в Г. принимают за одну из координатных линий, т. к. оно в каждой данной точке может быть построено однозначно при помощи уровня или даже простейшего отвеса. Поверхность воды в океанах и сообщающихся с ними морях в состоянии полного покоя и равновесия являлась бы одной из уровенных поверхностей Земли. Эту уровенную поверхность, мысленно продолженную под материками так, чтобы она везде пересекала направление отвесной линии под прямым углом, в Г. принимают за основную уровенную поверхность Земли ( рис. 1 ). Фигуру же этой уровенной поверхности в Г. принимают за сглаженную фигуру Земли и называют геоидом .Теория фигуры Земли и результаты астрономических и геодезических измерений показывают, что фигура геоида в общем близка к эллипсоиду вращения. Эллипсоид, который по своим размерам и положению в теле Земли наиболее правильно представляет фигуру геоида в целом, называют общим земным эллипсоидом . Изучение фигуры Земли заключается в определении размеров земного эллипсоида и его положения в теле самой Земли, а также отступлений геоида от этого эллипсоида. Если определить высоты точек земной поверхности относительно геоида, т. е. над уровнем моря, то тем самым будет изучена и фигура физической поверхности Земли, Размеры земного эллипсоида и его положение в теле Земли устанавливают путём определения направлений отвесных линий в избранных точках земной поверхности и взаимного положения этих точек в известной системе координат. Направление отвесной линии в данной точке характеризуется её астрономической широтой и долготой , которые выводятся из астрономических наблюдений. Взаимное положение точек земной поверхности определяется их геодезическими широтами и долготами (см. Геодезические координаты ), которые характеризуют направления нормалей в этих точках к поверхности т. н. референц-эллипсоида . Угол между отвесной линией и нормалью к поверхности референц-эллипсоида в данной точке есть отклонение отвеса и характеризует наклон уровенной поверхности Земли относительно поверхности референц-эллипсоида в этой точке. По наблюдённым отклонениям отвеса в избранных точках определяют как размеры земного эллипсоида, так и высоты геоида (см. Астрономо-гравиметрическое нивелирование ), Совокупность астрономических и геодезических измерений, позволяющих определять фигуру и размеры Земли, носит название градусных измерений и приводит к геометрическим методам решения этой проблемы. Существуют и физические, или динамические, методы изучения фигуры и гравитационного поля Земли. Они основаны на измерениях ускорения силы тяжести и наблюдениях за движением искусственных спутников Земли и космических летательных аппаратов. Измеренные величины силы тяжести сравнивают с соответствующими теоретическими величинами, рассчитанными для известной эллипсоидальной уровенной поверхности. Разности тех и других величин силы тяжести называют аномалиями силы тяжести и характеризуют отклонения уровенных поверхностей Земли от поверхности эллипсоида. Они позволяют определить сжатие Земли и отступления геоида от земного эллипсоида. Отступление реальной фигуры Земли от правильной шарообразной формы и аномалии гравитационного поля Земли вызывают возмущения орбит искусственных космических объектов. Зная же возмущения орбит искусственных космических тел, на основании наблюдений и измерений можно определить фигуру и внешнее гравитационное поле Земли. совместно применение геометрических и динамических методов позволяет определить одновременно фигуру, размеры и гравитационное поле Земли как планеты. Отклонения отвеса и аномалии силы тяжести отражают особенности внутреннего строения Земли и используются для выяснения вопросов о распределении масс внутри Земли и особенно для изучения строения земной коры. Данные о фигуре, размерах и гравитационном поле Земли имеют большое значение для установления масштаба взаимных расстояний и масс небесных тел. Они используются также для механико-математических расчётов, связанных с запуском космических летательных аппаратов и с изучением космического пространства вообще. Другие задачи Г. состоят в различных измерениях на земной поверхности для отображения её на планах и топографических картах , которые имеют большое значение для военного дела и без которых не обходится ни одно народно-хозяйственное и инженерно-техническое мероприятие. Геодезические работы производятся с целью изыскания, проектирования и строительства гидротехнических сооружений и промышленных предприятий, ирригационных и судоходных каналов, наземных и подземных путей сообщения и т. п. Геодезические работы и топографические карты служат основой планировки городов и населённых пунктов, землеустроительных и лесоустроительных мероприятий, поиска полезных ископаемых и освоения природных богатств и т. д. Иногда приходится считаться с тем, что фигура и гравитационное поле Земли, а также земная поверхность претерпевают изменения, обусловленные различными внешними и внутренними причинами. Эти изменения изучаются по результатам повторных астрономических наблюдений, геодезических измерений и гравиметрических определений. Предполагаемое горизонтальное движение материков изучают повторными астрономическими определениями положения отдельных точек земной поверхности. Повторные геодезические определения взаимного положения и высот точек земной поверхности через известные промежутки времени позволяют установить скорость и направление горизонтальных и вертикальных движений земной коры. Разделы геодезии и виды геодезических работ . Область геодезических знаний делится на высшую геодезию и геодезию, которые сами подразделяются на более или менее самостоятельные разделы. Основной задачей высшей Г. является определение фигуры, размеров и гравитационного поля Земли, а также изучение теорий и методов её решения. В задачи высшей Г. входит также изучение теорий и методов основных геодезических работ, служащих для построения опорной геодезической сети и доставляющих данные для решения научных и практических задач Г. Геодезическая сеть представляет систему надлежаще выбранных и закрепленных на земной поверхности точек, называемых опорными геодезическими пунктами , взаимные положения и высоты которых определены в принятой системе координат и счёта высот. Положения опорных геодезических пунктов определяют преимущественно методом триангуляции , в основе которой лежит тригонометрический принцип измерения расстояний. Метод триангуляции состоит в построении на местности рядов и сетей треугольников, последовательно связанных между собой общими сторонами. Измерив в каком-нибудь из треугольников ( рис. 2 ) одну сторону, называемую базисом или базисной стороной, и в каждом из них не менее 2 углов, длины сторон всех треугольников определяют путём тригонометрических вычислений. Обычно в каждом треугольнике измеряют все 3 угла, а в любой триангуляции, покрывающей значительную территорию, измеряют большое количество базисов, которые размещаются на определённом расстоянии друг от друга. Для построения геодезической сети применяется и метод полигонометрии , который состоит в измерении на местности длин последовательно связанных между собой линий, образующих полигонометрический ход, и горизонтальных углов между ними. Зная положение одного пункта и направление одной связанной с ним линии полигонометрического хода, путём вычислений последовательно определяют положение всех пунктов хода в принятой системе координат. Иногда положение опорных геодезических пунктов определяют методом трилатерации , измеряя все три стороны всех треугольников, образующих геодезическую сеть. Геодезические пункты располагаются на возвышенных точках местности, которые выбирают рекогносцировкой . Каждый пункт закрепляется на местности закладкой на некоторую глубину бетонного блока с вделанной в него маркой, обозначающей вершину треугольника (см. Центр геодезический ) ( рис. 3 ), и постройкой деревянной или металлической вышки, служащей штативом для угломерного инструмента и визирной целью при измерении углов (см. Сигнал геодезический ) ( рис. 4 ). Иногда геодезические пункты совмещаются с наиболее выделяющимися местными предметами, такими, как водонапорные башни, шпили высоких зданий и т. и. В зависимости от последовательности построения и точности измерений геодезической сети подразделяются на классы. Так, государственная геодезическая сеть СССР делится на I, II, III и IV классы. Государственная триангуляция I класса в СССР строится из рядов приблизительно равносторонних треугольников со сторонами 20-25 км , расположенных примерно по направлению земных меридианов и параллелей через 200-250 км . Пространства, ограниченные рядами триангуляции I класса, покрываются сплошными сетями треугольников II класса со сторонами около 10-20 км . Дальнейшее сгущение сети геодезических пунктов производится построением треугольников III и IV классов. В местах пересечения рядов триангуляции I класса и в сетях триангуляции II класса измеряют базисы длиной не менее 5-6 км или базисные стороны. Базисы измеряют мерными проволоками (см. Базисный прибор ) путём последовательного откладывания их по линии базиса, причём ошибки измерений не превышают 1:1000000 доли длины базиса. Базисные стороны измеряют непосредственно электрооптическими дальномерами с ошибкой не более 1:

400000. Для измерения линий в полигонометрических ходах и сторон треугольников в трилатерации применяют также радиодальномеры .Углы треугольников и углы поворота полигонометрических ходов измеряют при помощи угломерных геодезических инструментов , представляющих собой сложные оптико-механические устройства. При этом под углом между направлениями на 2 наблюдаемых предмета в данной точке понимается угол между плоскостями, проходящими через эти предметы и отвесную линию в данной точке. Погрешности измерений углов треугольников в триангуляции I и II классов обычно не превышают 0,7'. Для построения сети опорных геодезических пунктов и определения их положения используют также результаты наблюдений за движением искусственных спутников Земли. Наблюдения спутника состоят либо в фотографировании его на фоне звёзд, положения которых известны, либо в измерениях расстояний до него с точек стояния при помощи радиотехнических средств или же в выполнении тех и других операций одновременно. Если законы движения спутника хорошо изучены, то он в этом случае служит подвижным геодезическим пунктом, координаты которого на каждый данный момент времени известны. Если же законы движения спутника не изучены, то он служит лишь промежуточным геодезическим пунктом, так что для определения неизвестной точки земной поверхности наблюдения спутника необходимо выполнять строго одновременно как в этой точке, так и в нескольких известных геодезических пунктах. Рассмотрение теорий и методов использования спутников для решения научных и практических задач Г. составляет содержание спутниковой геодезии .В конечных точках базисов и базисных сторон триангуляции I и II классов определяют широту и долготу этих точек, а также азимут направления на избранный земной предмет путём астрономических наблюдений (см. Лапласов пункт ). Астрономические широты и долготы определяют также на промежуточных пунктах триангуляции I класса, выбираемых не реже чем 70-100 км . Астрономические определения на пунктах опорной геодезической сети превращают её в астрономо-геодезическую сеть , которая доставляет основные данные для исследований фигуры и размеров Земли и служит для распространения единой системы координат на всю территорию страны. Рассмотрение теории и методов определения географического положения места из астрономических наблюдений относится к геодезической астрономии .Плановое положение геодезических пунктов определяют геодезическими координатами, а именно I - широтами и долготами их проекций на поверхность некоторого земного эллипсоида - референц-эллипсоида. В каждом геодезическом пункте вместе с его координатами определяют также направления на смежные пункты относительно меридиана. Эти направления называют геодезическими азимутами и служат для ориентировки на местности. Геодезические координаты одного из пунктов, являющегося исходным пунктом опорной геодезической сети, и геодезический азимут направления на один из смежных с ним пунктов устанавливают определением его астрономических координат и астрономического азимута того же направления исправлением их за влияние отклонения отвеса. Полученные данные, а также высота геоида над поверхностью референц-эллипсоида в исходном пункте характеризуют положение принятого эллипсоида в теле Земли и называются исходными геодезическими датами . Геодезические координаты и азимуты остальных пунктов получают путём вычисления по результатам геодезических измерений, приведённых к поверхности референц-эллипсоида. Для вычисления координат пунктов государственной геодезической сети СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид ), который характеризуется следующими данными: большая полуось а 6 37 8 245 м , полярное сжатие a 1:298,3, а исходным пунктом служит Пулковская астрономическая обсерватория (центр её Круглого зала), причём для неё приняты следующие геодезические координаты: широта В 59| 4618,55', долгота L 30|19'42,09', полученные путём исправления её астрономической широты и долготы за влияние отклонения отвесной линии от нормали к поверхности эллипсоида Красовского. Высота геоида в Пулково над поверхностью этого эллипсоида принята равной нулю. Один из разделов высшей Г. рассматривает геометрию земного эллипсоида и называется сфероидической Г. В её задачи входит разработка методов приведения геодезических измерений к поверхности референц-эллипсоида, методов решения треугольников и вычисления координат опорных пунктов на этой поверхности. Сфероидическая Г. даёт и математические основы методов определения фигуры и размеров Земли из градусных измерений. Приведение геодезических измерений к поверхности референц-эллипсоида состоит в проектировании соответствующих пунктов на эту поверхность нормалями к ней. Это достигается тем, что в результаты геодезических измерений, например в длины линий и величины углов, вводятся поправки за высоту земной поверхности над поверхностью референц-эллипсоида и отклонения отвесной линии в определяемых пунктах. Проекции определяемых пунктов на поверхности референц-эллипсоида соединяют геодезическими линиями , а их координаты получают последовательным вычислением и суммированием разностей координат каждых 2 смежных пунктов по длине и направлению соединяющей их геодезической линии (см. Геодезическая задача ). Т. к. геодезические координаты выражаются в угловой мере и для практических целей неудобны, то они обычно заменяются прямоугольными координатами на плоскости путём отображения на ней поверхности референц-эллипсоида по тому или иному математическому закону точечного соответствия (см. Геодезические проекции ). Сфероидическая Г. рассматривает теории отображения на плоскость только ограниченных частей поверхности земного эллипсоида. Отображение же всей поверхности земного эллипсоида на плоскость для построения географических карт рассматривается в математической картографии (см. Картографические проекции ). Высоты опорных геодезических пунктов определяют методами геометрического нивелирования , которое состоит в измерении и суммировании разностей высот каждых двух последовательных точек, расположенных на расстоянии (в зависимости от класса) 100-300 м одна от другой по некоторой линии, образующей нивелирный ход. Разности высот определяют нивелиром как разность отсчётов по имеющим точные деления рейкам, когда они установлены по отвесу, а визирная линия трубы нивелира строго горизонтальна. Линии геометрического нивелирования в зависимости от последовательности и точности выполнения работы подразделяются на классы. В СССР нивелирование 1 класса производится по особо намеченным линиям, образующим замкнутые полигоны с периметром около 1600 км , и выполняется с наивысшей точностью, достижимой при применении современных инструментов и методов работы. Так, по линиям I класса случайная ошибка нивелирования не превышает 0,5 мм и систематическая ошибка составляет всего лишь 0,03 мм на 1 км нивелирного хода. Нивелирная сеть II класса строится из линий, прокладываемых вдоль железных, шоссейных, грунтовых дорог и больших рек и образующих замкнутые полигоны с периметром около 600 км . По линиям нивелирования II класса разности высот определяются со средней случайной ошибкой не более 1 мм и систематической - не более 0,2 мм на 1 км нивелирной линии. Нивелирные сети I и II классов сгущаются линиями нивелирования III и IV классов. Линии нивелирования всех классов закрепляются на местности реперами или марками, которые закладываются через каждые 3-5 км в грунт, стены каменных зданий ( рис. 5 ) и т. д. На линиях нивелирования I, II и III классов через 50-80 км и в местах их пересечения закладывают т. н. фундаментальные реперы, рассчитанные на долговременную сохранность. Высоты реперов и марок нивелирования вычисляют в той или иной системе высот над уровнем моря в каком-нибудь исходном пункте. В нивелирных работах СССР принята система нормальных высот, а исходным пунктом служит Кронштадтский футшток, нуль которого совпадает с многолетним средним уровнем Балтийского моря. Для определения координат и высот пунктов опорной геодезической сети необходимы данные о распределении силы тяжести на земной поверхности. Вопросы измерения силы тяжести рассматриваются в гравиметрии , которая представляет собой самостоятельный раздел геодезических знаний. Методы использования гравиметрических данных для решения научных и практических задач Г. составляют содержание геодезической гравиметрии , созданной трудами советского учёного М. С. Молоденского. В области геодезии рассматриваются методы, техника и организация работ, связанных с измерениями на земной поверхности для отображения её на планах и картах. Совокупность этих работ представляет топографическую съёмку местности и поэтому соответствующий раздел Г. часто называют топографией . В прошлом топографические съёмки производились наземным способом, который теперь применяется для съёмки лишь небольших участков местности. Топографические съёмки значительных площадей земной поверхности производятся путём сплошного фотографирования местности с летательных аппаратов (см. Аэрофотосъёмка ) и последующей фотограмметрической обработки аэроснимков (см. Фотограмметрия ). Результатом топографических съёмок являются топографические карты, которые служат исходным материалом для составления различных карт в более мелких масштабах. Методы составления и издания всевозможных карт рассматриваются в картографии .Изучение методов, техники и организации геодезических работ, связанных с проведением различных инженерных мероприятий (строительство гидротехнических сооружений, путей сообщения, крупных высотных зданий, промышленных предприятий и т. д.), составляет содержание инженерной геодезии . Рассмотрение аналогичных вопросов, относящихся к строительству шахт, тоннелей и метро, также входит в задачи инженерной Г. и вместе с тем является составной частью маркшейдерии .Т. к. геодезические измерения сопровождаются неизбежными ошибками различного характера, то в Г. принято каждую величину измерять многократно, а также измерять большее количество величин, чем необходимо для решения данной задачи. Измерение каждой избыточной величины создаёт одно условие, которое связывает её с другими величинами и которое не выполняется из-за их ошибок. Методы оценки точности геодезических измерений изучаются в теории ошибок (см. Наименьших квадратов метод ), а приведение геодезических измерений в соответствие с теми математическими условиями, которым они должны удовлетворять, составляет содержание уравнительных вычислений .Краткие исторические сведения . Г. возникла в глубокой древности, когда появилась необходимость землеизмерения и составления планов и карт для хозяйственных целей. В 7 в. до н. э. в Вавилоне и Ассирии на глиняных дощечках составлялись географические карты, на которых давались сведения также и экономического характера. В 6-4 вв. до н. э. были высказаны предположения о шарообразности Земли и найдены некоторые доказательства этого. В 3 в. до н. э. в Египте греческий учёный Эратосфен произвёл первое определение радиуса земного шара на основании правильных геометрических принципов, получивших название градусных измерений. В это время в трудах Аристотеля впервые появилось название 'Г.' как отрасли человеческих знаний, связанной с астрономией, картографией и географией. Во 2 в. до н. э. астрономы и математики установили понятия о географической широте и долготе места, разработали первые картографические проекции, ввели сетку меридианов и параллелей на картах, предложили первые методы определения взаимного положения точек земной поверхности из астрономических наблюдений. В начале 9 в. по поручению багдадского халифа Мамуна было произведено одно из первых градусных измерений вблизи Мосула и достаточно точно определён радиус земного шара. Начало геодезических работ в России относится к 10 в. В сборнике законов 'Русская правда' (11-12 вв.) содержатся постановления об определении земельных границ путём измерений. Одна из первых карт Московского государства, т. н. Большой чертёж, время составления которой относится к 16 в., основывалась на маршрутных съёмках и на опросных данных. Развитие современной Г. и геодезических работ началось в 17 в. В начале 17 в. была изобретена зрительная труба. Большим шагом в развитии Г. явилось изобретение нидерландским учёным В. Снеллиусом в 1615-1617 метода триангуляции, который до сих пор служит одним из основных методов определения опорных пунктов для топографических съёмок. Появление угломерного инструмента, называемого теодолитом , и сочетание его со зрительной трубой, снабженной сеткой нитей, повысило точность угловых измерений в триангуляции. В середине 17 в. был изобретён барометр, явившийся первым инструментом для определения высоты точек земной поверхности. Были разработаны также графические методы топографической съёмки, упростившие составление топографических карт. Открытие английским учёным И. Ньютоном закона всемирного тяготения во 2-й пол. 17 в. привело к возникновению идеи о сфероидичности Земли, т. е. сплюснутости её в направлении полюсов. Исходя из закона тяготения и гипотез о внутреннем строении Земли, И. Ньютон и нидерландский учёный X. Гюйгенс определили сжатие земного сфероида чисто теоретическим путём и получили сильно противоречивые результаты, вызвавшие сомнения в сплюснутости фигуры Земли и даже в обоснованности закона всемирного тяготения. В связи с этим в 1-й половине 18 в. Парижской АН были направлены в Перу и Лапландию геодезические экспедиции, которые произвели там градусные измерения, подтвердившие правильность идеи о сфероидичности Земли и доказавшие обоснованность закона всемирного тяготения. В середине 18 в. французский учёный А. Клеро разработал основы теории фигуры Земли и обосновал закон изменения силы тяжести на земном сфероиде в зависимости от географической широты. Эпоха открытия закона тяготения и упомянутых геодезических экспедиций явилась эпохой становления Г. как самостоятельной науки о фигуре Земли и методах её изучения. В конце 18 в. во Франции П. Мешен и Ж. Деламбр измерили дугу меридиана от Дюнкерка до Барселоны для установления длины метра как 1:10000000 доли четверти меридиана и получили один из первых достоверных выводов о размерах земного эллипсоида. Развитие геодезических работ в России усилилось при Петре I, который в 1701 основал в Москве первую в России астрономическую обсерваторию и Школу математических и навигацких наук, готовившую математиков, астрономов, геодезистов и географов. Первые топографические съёмки в России были начаты на рубеже 17 и 18 вв. В 1720 Петр I топографические и картографические работы в России подчинил Сенату, подчеркнув тем самым их большое государственное значение. В 1739 в Петербургской АН был организован Географический департамент, который руководил всеми геодезическими и картографическими работами в России. По изданному в 1765 манифесту о генеральном межевании проводились геодезические работы по составлению планов землевладений, продолжавшиеся почти до середины 19 в. и доставившие обширный материал для картографирования страны. В 1779 в Москве возникла землемерная школа, которая в 1819 была преобразована в Константиновское землемерное училище, а в 1835 - в Константиновский межевой институт, позднее - крупное высшее учебное заведение по подготовке геодезистов и картографов. В связи с возросшими требованиями военного дела к топографическим картам в 1797 при Генеральном штабе было организовано Депо карт , которое в 1812 было преобразовано в Военно-топографическое депо, а в 1822 создан Корпус военных топографов. Все основные астрономо-геодезические и топографические работы в дореволюционной России выполнялись этим учреждением, труды которого являются замечательным памятником развития отечественной геодезической и картографической науки. В 1816 под руководством русского военного геодезиста К. И. Теннера и астронома В. Я. Струве в западных пограничных губерниях России были начаты большие астрономо-геодезические работы, которые в 1855 завершились градусным измерением огромной (более 25| по широте) дуги меридиана, простирающейся по меридиану 30| от устья Дуная до берегов Северного Ледовитого океана ( рис. 6 ). Немецкие учёные К. Ф. Гаусс в 1821-24 в Ганновере и Ф. В. Бессель в 1831-34 в Восточной Пруссии выполнили небольшие градусные измерения. Они усовершенствовали также методы и инструменты геодезических работ и разработали новые способы решения геодезических задач на поверхности земного эллипсоида. В 1828 Гаусс предложил принять за математическую поверхность Земли средний уровень моря. Русский военный геодезист Ф. Ф. Шуберт в 1859 впервые высказал мысль о возможной трёхосности Земли и определил размеры трёхосного земного эллипсоида. Немецкий физик И. Листинг в 1873 ввёл понятие о геоиде для обозначения фигуры Земли. В 1888 русский учёный Ф. А. Слудский создал оригинальную теорию фигуры Земли и обосновал некоторые методы её изучения. В течение 19 в. был получен ряд определений размеров земного эллипсоида. Для успешного решения основной проблемы Г. в 1864 была создана Европейская, а затем и Международная комиссия по измерению Земли, которая явилась родоначальницей Международного геодезического и геофизического союза . Во 2-й половине 19 в. геодезические методы стали применяться для изучения внутреннего строения Земли и движений земной коры. После Октябрьской революции наступила новая эпоха развития Г. и геодезических работ в нашей стране. По Декрету СНК РСФСР от 15 марта 1919, подписанному В. И. Лениным, было создано Высшее геодезическое управление, преобразованное впоследствии в Главное управление геодезии и картографии при Совете Министров СССР и являющееся центром государственной геодезической службы страны. Затем были образованы геодезические институты СССР и средние технические учебные заведения, выпускающие инженеров и техников по всем видам геодезических и картографических работ. В конце 1928 в Москве организован Центральный научно-исследовательский институт геодезии, аэросъёмки и картографии, превратившийся в крупнейший центр развития научной мысли в области геодезических знаний. В 1928 сов. геодезист Ф. Н. Красовский разработал стройную и научно обоснованную схему и программу построения опорной геодезической сети, предусматривающую создание астрономо-геодезической сети на всей территории СССР. В ходе построения этой сети усовершенствовались теории, методы и инструменты астрономических определений и геодезических измерений. В СССР усовершенствован базисный прибор с подвесными мерными проволоками из инвара , освоено изготовление инварных мерных проволок с любым заданным коэффициентом расширения, разработаны оригинальные типы электрооптических дальномеров, радиодальномеров и радиогеодезических систем, позволяющих измерять расстояния с высокой точностью. Возникла промышленность, выпускающая астрономо-геодезические инструменты, аэросъёмочную аппаратуру и фотограмметрические приборы. В 1932 по постановлению Совета труда и обороны СССР началась общая гравиметрическая съёмка страны, получившая впоследствии большое значение для решения научных и практических задач Г. и геофизики. Из исследований А. А. Михайлова, М. С. Молоденского и др. возникла геодезическая гравиметрия, являющаяся теперь важным разделом геодезических знаний. В связи с трудностями определения фигуры геоида М. С. Молоденский обосновал теорию изучения фигуры физической поверхности и внешнего гравитационного поля Земли. И. Д. Жонголович разработал методы определения фигуры, размеров и гравитационного поля Земли по наблюдениям искусственных спутников. По градусным измерениям СССР и других стран Ф. Н. Красовский и А. А. Изотов в 1940 определили новые размеры земного эллипсоида, которые применяются теперь в СССР и других социалистических странах. Позднее А. А. Изотов и М. С. Молоденский определили ориентировку эллипсоида Красовского в теле Земли. В 1942-45 под руководством Д. А. Ларина было произведено общее уравнивание образовавшейся к тому времени обширной астрономо-геодезической сети СССР. Сов. геодезисты разработали методы уравнивания больших астрономо-геодезических сетей и сплошных сетей триангуляции (Ф. Н. Красовский, Н. А. Урмаев, И. Ю. Пранис-Праневич и др.). Широкое развитие в СССР получили топографические съёмки и картографические работы, связанные с нуждами народного хозяйства и обороны страны. С 1925 в топографических съёмках стали применяться аэрофотосъёмка и фотограмметрические методы, разработанные советскими учёными (Ф. В. Дробышев, М. Д. Коншин, Г. В. Романовский и др.). В 1945 завершилась работа по созданию многолистной государственной топографической карты СССР в масштабе 1:

1000000. Позднее была создана топографическая карта в масштабе 1:100000 на всю территорию страны, значительная часть которой покрыта съёмками и в более крупных масштабах. Геодезические работы производились в связи с землеустройством, строительством городов, гражданских сооружений, промышленных предприятий, путей сообщения и т. д. Методы Г. применялись также при строительстве атомных электростанций, крупных ускорителей заряженных частиц и т. д. Развитие Г. в СССР ознаменовалось постановкой и решением таких крупнейших научных проблем и практических задач, которые никогда не ставились в других странах.Лит.: Руководства и монографии : Красовский Ф. Н. и Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1-2, М., 1938-39; Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Закатов П. С., Курс высшей геодезии, 3 изд., М., 1964; Чеботарев А. С., Геодезия, 2 изд., ч. 1, М., 1955; Чеботарев А. С., Селиханович В. Г. и Соколов М. Н., Геодезия, ч. 2, М., 1962; Гержула Б. И., Основы инженерной геодезии, М., 1960; Топография, под ред. Д. А. Слободчикова, ч. 1-2, М., 1954; Михайлов А. А., Курс гравиметрии и теории фигуры Земли, 2 изд., М., 1939; Бровар В. В., Магницкий В. А. и Шимбирев Б. П., Теория фигуры Земли, М., 1961; Шокин П. Ф., Гравиметрия, М., 1960; Молоденский М. С., Юркина М. И. и Еремеев В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, 'Тр. Центрального научно-исследовательского института геодезии, аэросъемки и картографии', 1960, в. 131; Изотов А. А., Форма и размеры Земли по современным данным, там же, 1950, в. 73; Елисеев С. В., Геодезические инструменты и приборы, 2 изд., М., 1959; Чеботарев А. С., Способ наименьших квадратов с основами теории вероятностей, М., 1958; Пранис-Праневич И. Ю., Руководство по уравнительным вычислениям триангуляции, 2 изд., М., 1956; Вейс Г., Геодезическое использование искусственных спутников Земли, пер. с англ., М., 1967; Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967; Беррот А. и Хофман В., Космическая геодезия, пер. с нем., М., 1963; Helmert F. R., Die mathematischen und physikalischen Theorien der hoheren Geodasie, 2 Aufl., Bd 1-2, Lpz., 1962; Jordan W., Eggert О., Kneissl М., Handbuch der Vermessungskunde, 10 Aufl., Bd 1-4, Stuttg., 1955-61; Rysavy J., Vyssi geodesie, Praha,

1947. История . Котельников С. К., Молодой геодет, или первые основания геодезии, содержащие все геодетское знание, предложенное вкратце, изъясненное правилами и примерами, СПБ, 1766; Болотов А. П., Курс высшей и низшей геодезии, ч. 1-2, СПБ, 1845-49; Струве В. Я., Дуга меридиана, т. 1-2, СПБ, 1861; Евтеев О. А., Первые русские геодезисты на Тихом океане, М., 1950; 50 лет советской геодезии и картографии, под ред. А. Н. Баранова и М. К. Кудрявцева, М., 1967; Бируни, Геодезия, Избр. произв., т. 3, Таш.,

1966. Справочники . Геодезия. Справочное руководство, под ред. М. Д. Бонч-Бруевича, т. 1-9, М. - Л., 1939-1949; Справочник геодезиста, под ред. В. Д. Большакова и Г. П. Левчука, М., 1966: Библиографический указатель геодезической литературы с начала книгопечатания до 1917 г., сост. Е. Ф. Беликов, Л. П. Соловьев, М.,

1971. А. А. Изотов.

геодезия

научная дисциплина, изучающая форму, размеры Земли и методы измерений на земной поверхности для отображения её на планах и картах учебный предмет, содержащий теоретические основы данной дисциплины учебник, излагающий содержание данного учебного предмета

Что такое геодезия: для чего она нужна в строительстве и что такое геодезические работы

Земля во все времена была ключевым интересом человека, ее наличие делало его богатым и влиятельным, поэтому все действия, связанные с изучением и исчислением этого природного ресурса, входят в единую науку. Что такое геодезия, на какие виды подразделяется и зачем необходима. Обо всем будем говорить подробно.

Определение

Это наука, которая занимается изучением поверхности планеты Земля, дает характеристику ее свойств, пользуясь самыми различными методами и способами. Если перевести слово с греческого языка буквально, то получится земледеление, поскольку гео – в переводе с греческого означает земля, а дезия – делить.

Во времена Древней Греции, когда зародился этот термин, он полностью отображал суть науки, ведь землю тогда постоянно делили между странами и империями. Сегодня направление включает гораздо больше процессов и задач, поэтому точный перевод не используется.

Важно знать! Египтяне задолго до начала нашей эры занимались сложными геодезическими измерениями для постройки пирамид и оросительных каналов.

Сегодня к геодезии относится землемерие в различном его проявлении и все способы измерений, целью которых является определение размеров и формы земельных участков. Ученые, которые работают в данной области, называются геодезистами.

Их поле деятельности весьма обширно:

  • применение новых способов создания земельных карт,
  • использование разнообразных методов измерения пространства: на поверхности, под водой, над землей, в космосе,
  • измерение объектов, которые находятся на земной поверхности и нанесение их на карты.

Это интересно! Выбираем профессии связанные с наукой географией

Ученый Витковский считал, что это одна из наиболее полезных и необходимых наук, поскольку существование человечества ограничено пространством Земли, и изучить ее структуру и устройство необходимо.

Задачи и виды науки

С развитием технологий, данная наука также изменяется, как ее процессы и задачи, например, сегодня все данные должны пропускаться через компьютерные системы. Чтобы ответить на вопрос, для чего нужна геодезия, необходимо понять, что поставленные перед ней задачи делятся на фундаментальные и прикладные.

Все процессы, связанные с изучением планеты и ее гравитационного поля в целом, являются фундаментальными.

Эта группа ученых занимается:

  • переносом данных и параметров различных земельных участков на карты и топографические планы,
  • изучением тектонических плит и их движения,
  • созданием единой системы координат и отображение ее на поверхности Земли.

Прикладная группа занимается решением практических задач, которые позволяют проводить различные земельные работы:

  • создание геоинформационных систем и их использование,
  • работа с кадастровыми планами (создание и обработка),
  • накопление точных топографических данных.

Измерительные процессы, работа с системами координат, создание топографических документов – все это прикладная геодезия, а все действия с землей – это геодезические работы.

Это интересно! Для чего нужна и что это такое физическая культура

Из-за обширности задач науки, ее разделили на виды:

  1. Высшая геодезия – это главное направление науки, которое изучает строение планеты Земля, ее характеристики, а также ее координаты и характеристики в космосе. К ней также относят: геодезическую астрономию — которая занимается сбором астрономических данных за планетой, гравиметрию — наблюдения за движениями земной коры, тектонических плит и горных пород, космическую геодезию — применение космических аппаратов для изучения характеристик Земли.
  2. Топография – сюда входят все действия по работам с картами: перенесение местности на бумагу, а также нанесение на нее реальных объектов. Эта отрасль занимается измерением и описанием земли на бумаге, причем, как в глобальных масштабах (атласы, карты), так и в более мелких (измерение местности и составление кадастровых планов, помощь в строительстве).
  3. Картография – эту отрасль можно отнести к топографии, учитывая то, что картография занимается исключительно созданием карт любых масштабов.
  4. Фотограмметрия съемка поверхности Земли фотографическими аппаратами, установленными на самолетах, спутниках, для создания документов (карт, атласов, кадастров).
  5. Инженерная или строительная геодезия самая популярная, современная отрасль, занимающаяся изысканиями для возведения любых сооружений.
  6. Маркшейдерия – занимается изучением подземных ресурсов, на основании данных исследований затем проводятся подземные работы шахтерами.
  7. Гидрография – картографирование и методы изучения поверхности земной коры в морях и океанах.

Это интересно! Выбираем профессии связанные с кругосветными путешествиями

Все процессы, связанные с изучением земельного ресурса, необходимы не только для лучшего понимания устройства планеты Земля, но и для повседневных земляных работ.

Геодезические работы и их виды

Однозначно ответить на вопрос, что такое геодезические работы, нельзя, поскольку существует множество самых разных определений данного понятия. Наиболее приближенное к истине определение – это все работы, которые проводятся в процессе возведения различных инженерных и гидротехнических сооружений.

Они делятся на два типа:

  1. Полевые – измерение и описание земной поверхности на местности.
  2. Камеральные – последующая обработка полученных на местности данных.

Такие работы могут быть предварительными, или начатыми до начала строительства и попутными, которые осуществляются в процессе стройки. Независимо от сроков выполнения, осуществляется попутный контроль в виде наблюдения за деформацией грунтов и замеров необходимых параметров.

Это интересно! Выбираем профессию: как можно стать археологом

Различают следующие виды геодезических работ:

  1. Топографо-геодезические – в данный вид входит создание всех возможных картографических схем, а также определение построение будущего сооружения. Вычисления осуществляют при возведении жилых комплексов, крупных инженерно-строительных сооружений, а также переустройстве городов. При этом, все съемки проходят в определенных строгих масштабах, соответствующим объектам, будь то населенные пункты или промышленные зоны с транспортными узлами.
  2. Разбивка – это разделение площади на квадраты с закрепленными вершинами, установка геодезических знаков и разработка разбивочных чертежей, которые выполнены в общепринятых государственных форматах и облегчают процессы строительства, а также обеспечивают гарантированный контроль качества. После проведения разбивки результаты направляются подрядчику застройки вместе с чертежами.
  3. Исполнительная съемка – проводится в течении всего строительства и фиксирует строящиеся объекты и их точное расположение. Съемка относится к контролирующим процессам и обеспечивает своевременное получение информации о проходящем строительстве, а также соответствию будущего строения требованиям ГОСТ. При этом особо пристально следят за теми частями зданий, которые обеспечивают устойчивость всего сооружения.
  4. Мониторинг деформативности – это еще один контролирующий процесс, который заключается в тщательном наблюдении за возможными отклонениями в сооружениях от установленных параметров во время строительства. Мониторинг проводится поэтапно, как и процесс стройки: при заливке фундамента, на каждый отстроенные пять этажей, после окончания стройки. Во время мониторинга особо пристально следят за фундаментом (нет ли прогибов и кренов), самой осадкой здания и его креном, а также отклонениями частей от монолита.
  5. Контроль подземных сетей – осуществляется до, вовремя и после возведения сооружений. Контроль за проседанием здания необходим постоянный, поскольку на данный процесс влияет множество факторов, как человеческих, так и природных. Путем съемки фиксируются все коммуникации (колодцы, дренажи) и их параметры, а также стыковка с другими ранее проложенными сетями и коммуникациями.

Геодезия в строительстве – это необходимость и гарантия безопасности, поэтому нельзя пренебрегать ею в целом или отказываться от какого-либо процесса. Экономия в данном случае может быть трагична.

Важно знать! Геодезические работы необходимы как при общей застройке населенных пунктов и возведении больших инженерных сооружений, так и при выполнении частного мелкомасштабного строительства.

Технологии

То, как осуществляют измерения, зависит от их типа, но в целом, любое строительство осуществляется по определённой схеме.

Технология геодезических работ такова:

  1. Выбор территории для строительства: проводят геологические изыскания, рассматривают рельеф, состав и характеристику грунта, и окружающие территории.
  2. Привязка будущего объекта к уже построенному. Особенно актуален этот пункт в больших городах, где застройка ведется в тесных условиях. Задаче геодезистов – правильно спланировать размещение будущего объекта.
  3. Перенос местности на топографических картах. На этом этапе создается подробный план застройки и отображение всех существующих объектов на нем.
  4. Изучение движения земной коры: определяются сейсмически устойчивые участки земли, зависимость сдвигов от природных условий и прочих факторов. На основе результатов исследования разрабатываются планы строительства и применяются соответствующие технологии.

Во время замеров и подсчетов используют специальные, чаще электронные, инструменты, среди которых:

  • нивелир инструмент помогает измерить высоты точек объекта,
  • тахометр – с помощью этого прибора строители измеряют углы и высоты точек в пространстве,
  • теодолит – выпускается двух разновидностей: оптический и электронный, помогает правильно измерять углы в пространстве.

Это интересно! Выбираем профессии, связанные с наукой физикой

Полезное видео

Подведем итоги

Геодезия – наука, которая востребована в строительстве и других отраслях. С ее помощью человечество может рационально использовать бесценный ресурс – землю.

что это за наука? Геодезия и картография

На свете существует много наук. Одна из них – геодезия. Что это за наука? Что она изучает? Где можно ей научиться? Ответы на эти и другие вопросы вы найдете в этой статье.

Геодезия – что это?

Как и астрономия, геодезия – это одна из древнейших наук. Однако если об астрономии знает каждый школьник, то о такой науке, как геодезия, большинство людей никогда не слышали. А в то же время без использования геодезических знаний развитие современного общества немыслимо.

Геодезия – что это? Что собой представляет эта наука? Если сказать кратко, то это наука об изучении и измерении поверхности Земли.

Геодезия – это наука о том, как производить измерения на поверхности земли, которые проводятся с целью изучения форм и размеров Земли, а также для изображения всей планеты и ее частей на планах и картах. Кроме того, геодезия занимается методами специальных измерений, которые необходимы для решения экономических и инженерных задач.

Отрасли геодезии

Геодезия – что это? Это наука, которая динамично развивается. Так, в процессе развития науки и техники она разделилась на ряд дисциплин.

Высшая геодезия изучает размеры и форму Земли, а также методы, с помощью которых можно с высокой точностью определить координаты точек поверхности планеты и изобразить их на плоскости.

Изучением размеров и форм земной поверхности с целью изображения ее на картах, профилях и планах занимается раздел геодезии - топография.

Геодезия и картография изучают процессы и методы создания и использования разнообразных карт.

Фотограмметрия занимается решением задач измерения по космическим и аэрофотоснимкам для разнообразных целей, например для обмеров сооружений и зданий, для получения планов и карт и прочее.

Прикладная, или инженерная, геодезия изучает целый комплекс геодезических работ, которые выполняются при строительстве, изысканиях и эксплуатации разнообразных сооружений и зданий.

Геометрическое соотношение между точками поверхности земли с помощью искусственных спутников Земли изучает космическая геодезия. Сейчас, в связи с тем, что появились новые достижения в области техники измерений и наблюдений, к числу исследований на Земле прибавились еще и проблемы решения научных задач по изучению размеров и формы Луны, а также остальных планет Солнечной системы и их полей гравитации.

Морская геодезия и картография занимаются решением как научных, так и прикладных геодезических задач на море. Главной задачей было и остается определение поверхности Земли и ее гравитационного поля в морях и океанах. Морская геодезия решает следующий ряд задач: строительство гидротехнических сооружений, эксплуатация и разведка подводных ресурсов и прочее. Однако важнейшей задачей подобного обеспечения является картографирование, которое сопровождается фотографированием, и геодезическая привязка.

Развитие геодезии как науки

Геодезия, как и многие другие науки, возникла в глубокой древности. Прогресс в точных и естественных науках, изобретение телескопа, маятника и прочих инструментов – все это способствовало ее развитию.

Однако стоит отметить, что за последние полвека эта наука добилась больших успехов, чем за все время своего существования. Это связано, например, с тем, что инженерная геодезия теперь может получить данные с искусственных спутников, а также с тем, что появилось множество электронных измерительных приборов и электронно-вычислительных машин.

Современный компьютер позволяет провести анализ огромного объема информационных данных, применить новые математические разработки, которые дали новый импульс развитию теоретический геодезии, проходящему параллельно с прогрессом теории информации и математики.

Прикладная геодезия: аспекты

Геодезические данные используются в различных областях, например в навигации, картографии и землепользовании. Что они позволяют узнать? Например, определить местоположение буровых платформ на шельфе, зону затопления после сооружения плотины, точное положение административных и государственных границ разного рода и прочее. Стратегические системы наведения и навигация в равной степени зависят от того, насколько точна информация о положении цели и адекватности физических моделей, которые описывают гравитационное поле Земли. Измерения, полученные геодезистами, используются при изучении тектоники плит и сейсмологии. При поиске многих полезных ископаемых (в том числе и нефти) применяется гравиметрическая съемка.

Где получить профессию геодезиста?

Сегодня в России существует большое количество учебных заведений, которые позволят получить профессию геодезиста. В области этой науки на разных уровнях освоения этой достаточно сложной специальности может работать специалист, который окончил как среднее учебное заведение – техникум или колледж геодезии, - так и высшее – академию, институт или университет.

Образование в этой сфере можно выбрать на свой вкус. Будущий специалист может окончить специализированный университет или институт геодезии. Например, МИИГАиК – это один из самых старейших и престижных специализированных вузов в России. Или же можно получить среднее образование: пойти учиться в Санкт-Петербургский или Новосибирский техникум геодезии и картографии.

После окончания средне-специального учебного заведения по специальности «геодезист» выпускник может рассчитывать на должность помощника геодезиста или техника-геодезиста. Кроме того, при желании он может продолжить совершенствовать свои знания в этой области, поступив в высшее учебное заведение.

Окончание вуза дает выпускнику право на самостоятельную работу, а окончание аспирантуры позволяет дальше продвигаться в карьере в научном и практическом направлении.

Чем занимается геодезист?

Среди многообразия видов деятельности можно выделить следующие направления:

  • Геодезист может заниматься наблюдением и измерением изменения земной поверхности как на локальном, так и на глобальном уровне.
  • Выполнять различные измерения ландшафта.
  • Составлять топографические планы и карты.
  • Создавать водные, лесные, земельные и прочие виды кадастров.
  • Заниматься определением и обозначением государственных границ.
  • Готовить отчеты о проведенных исследованиях.

Что сдавать, чтобы поступить на геодезиста?

Школьнику, который собирается в будущем посвятить себя геодезии, необходимо максимально хорошо знать некоторые общеобразовательные предметы, например математику, географию, русский язык, историю, обществознание, а также информатику и информационно-коммуникационные технологии. Как правило, именно эти дисциплины сдают на вступительных экзаменах в средних и высших учебных заведениях по геодезическим специальностям.

При поступлении на специальность, связанную с геодезией, обычно сдают какие-то три из шести вышеперечисленных предметов, однако какие именно предметы это будут – зависит от учебного заведения, факультета и вида специальности.

Принимать экзамены могут по результатам ГИА или ЕГЭ или же провести тестирование для абитуриентов по всем предметам, кроме истории и обществознания – они принимаются устно.

Некоторые колледжи и техникумы вообще не требуют сдачи вступительных экзаменов. Примером служит Новосибирский техникум геодезии и картографии, или НТГиК. В этом учебном заведении готовят специалистов по следующим специальностям: прикладная геодезия (геодезист-техник), картография (техник-картограф) и аэрофотогеодезия (аэрофотогеодезист-техник).

Востребованность профессии на рынке труда

Специалисты в области геодезии и картографии нередко требуются в разнообразных видах производства. Поэтому в вузовской и среднеспециальной подготовке этих специалистов наблюдается наличие разных уклонов, которые в дальнейшем определят практическую направленность работы геодезиста. Кроме того, на это накладывают отпечаток еще и традиции, которые исторически сложились в стенах учебного заведения.

Неудивительно, что существующие вузы готовят студентов по-разному. В любом учебном заведении есть своя специфика подбора уже имеющихся направлений по специальности. Однако любой вуз, техникум или колледж даст фундаментальную подготовку, которая в дальнейшем даст возможность изменить направление работы, переквалифицироваться и перейти на смежную специализацию.

Таким образом, можно сделать вывод, что геодезия сегодня является одной из интереснейших и развивающихся наук. Каждый специалист сможет найти себя в ней.

Что такое геодезия?

Геодезия - это наука о точном измерении и понимании трех фундаментальных свойств Земли: ее геометрической формы, ее ориентации в пространстве и ее гравитационного поля, а также изменения этих свойств со временем. Используя GPS, геодезисты могут отслеживать движение объекта 24 часа в сутки, семь дней в неделю.

Многие организации используют геодезию для нанесения на карту береговой линии США, определения границ суши и повышения безопасности транспорта и навигации.Для измерения точек на поверхности Земли геодезисты присваивают координаты (аналогичные уникальному адресу) точкам по всей Земле. В прошлом геодезисты определяли координаты точек с помощью инструментов земной съемки для измерения расстояний между точками. Сегодня геодезисты используют космические инструменты, такие как Глобальная система позиционирования (GPS), для измерения точек на поверхности Земли.

Геодезисты должны согласованно точно определять координаты точек на поверхности Земли.Набор точно измеренных точек является основой Национальной системы пространственной привязки, которая позволяет согласовывать разные виды карт друг с другом.

Для измерения Земли геодезисты строят простые математические модели Земли, которые отражают наиболее крупные и очевидные особенности. Геодезисты приняли эллипсоид как основную модель Земли. Поскольку эллипсоид основан на очень простой математической модели, он может быть полностью гладким и не включать никаких гор или долин.Когда требуется дополнительная детализация Земли, геодезисты используют геоид. Геоид имеет форму, очень похожую на глобальный средний уровень моря, но он существует по всему земному шару, а не только над океанами.

.

Что такое геодезия

Геодезия - это наука о точном измерении размера, формы, ориентации, распределения массы Земли и того, как они меняются со временем.

Гравитация определяется массой. Масса Земли распределяется неравномерно и также меняется со временем. Эта визуализация гравитационной модели (геоида) была создана на основе данных NASA Gravity Recovery and Climate Experiment (GRACE) и показывает вариации гравитационного поля Земли.Красным показаны области с относительно сильной гравитацией, а синим - области, где гравитация слабее.

Происхождение: Создано: НАСА / Лаборатория реактивного движения / Центр космических исследований Техасского университета в Остине. Загружено с: https://eos.org/features/einstein-says-its-309-7-meter-oclock?utm_source= eos & utm_medium = email & utm_campaign = EosBuzz102519
Повторное использование: Этот элемент находится в общественном достоянии и может использоваться повторно без ограничений.

Пример раннего геодезического метода - немецкие геодезисты времен Первой мировой войны.

Происхождение: Это изображение было предоставлено Wikimedia Commons Федеральным архивом Германии (Deutsches Bundesarchiv) в рамках проекта сотрудничества. Федеральный архив Германии гарантирует подлинное представление только с использованием оригиналов (негативных и / или позитивных), соответственно. оцифровку оригиналов, как это предусмотрено Архивом цифровых изображений. https://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild_183-S12054,_Vermessungstruppe_bei_Fernaufnahmen.jpg
Повторное использование: Этот элемент предлагается под лицензией Creative Commons Attribution-NonCommercial-ShareAlike http: // creativeorg / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

За последнее столетие геодезия превратилась из довольно простых геодезических технологий, которые помогали точно определять положение на Земле, до сложного набора методов, доступных теперь научным исследователям и студентам. В последние десятилетия геодезические приложения быстро расширились: от измерения движений плит и мониторинга опасностей землетрясений до исследований вулканических, оползневых и погодных опасностей; изменение климата; и водные ресурсы.Узнайте больше из этого видео о 9 воздействиях геодезии.

Геодезические методы

GPS / GNSS (Глобальная система позиционирования / Глобальная навигационная спутниковая система) Высокоточная GPS-станция в районе Сьерра-Невада в обсерватории границы плиты (станция P149)

Provenance: UNAVCO - http://www.unavco.org/instrumentation/networks/status/pbo/photos/P149
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http: // creativecommons.org / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

Три спутника GPS используются для определения местоположения, а четвертый обеспечивает временную коррекцию. Вместе они позволяют рассчитывать точные позиции.

Provenance: NOAA - http://oceanservice.noaa.gov/education/kits/geodesy/media/supp_geo09b3.html
Повторное использование: Этот элемент находится в общественном достоянии и может использоваться повторно без ограничений.

GPS - это базирующийся в США флот, состоящий из более чем 30 спутников, которые вращаются вокруг нашей планеты на высоте примерно 11 000 миль над поверхностью Земли. GNSS включает в себя GPS США и аналогичные спутники из других стран. Положение может быть вычислено с использованием трех спутников плюс четвертый для корректировки неточности часов. Возможно, вы уже знакомы с портативными устройствами GPS, которые есть в телефонах, планшетах, камерах, автомобилях и т. Д. В то время как портативный GPS может иметь точность до нескольких метров или десятков метров, высокоточные «дифференциальные» устройства GPS, которые используют ученые Земли в своих исследованиях, могут измерять движения со скоростью до одного миллиметра в год.Первыми основными приложениями высокоточного GPS были мониторинг тектонических движений плит и оценка землетрясений и вулканических опасностей. Совсем недавно ученые смогли применить этот метод к опасностям оползней, мониторингу грунтовых вод, измерениям приливов, ледяному / снежному покрову, а также к влажности почвы и атмосферы. Узнайте больше о GPS из образовательных ресурсов UNAVCO или из Википедии. Некоторые полезные ресурсы по продуктам для водного цикла GPS и «GPS с отражением» можно найти на сайте GPS Spotlight.

модулей GETSI с данными GPS:

Лидар (обнаружение света и дальность)

С бортовым LiDAR сканер устанавливается на самолете и объединяется с данными GPS и IMU (инерциальный измерительный блок) для получения топографических данных с высоким разрешением.

Происхождение: Эд Ниссен (Горная школа Колорадо)
Повторное использование: Этот предмет предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ You может повторно использовать этот элемент в некоммерческих целях, если вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Лидар - это технология дистанционного зондирования, которая измеряет расстояние, посылая лазерные импульсы и вычисляя время возврата отражения.Лидарные сканеры могут быть установлены на самолетах, наземных треногах или мобильных устройствах (бортовой лидар, наземное лазерное сканирование [TLS] и мобильный лидар соответственно). В зависимости от способа настройки съемки полученная топографическая модель может иметь разрешение от метров до сантиметров. Лазерные лучи также обладают способностью проникать и возвращаться через отверстия в растительном покрове, таким образом создавая топографию «голой земли» по последним возвращаемым сигналам, что невозможно при использовании других методов.Разница между первым и последним возвращением на участках с растительностью может дать объем и плотность растительного покрова. Повторное сканирование одной и той же области позволяет детально измерить топографические изменения. Лидар может использоваться для широкого спектра приложений оценки опасностей, стратиграфического анализа, понимания геоморфических и тектонических процессов и исследования растительности. Узнайте больше о лидаре из OpenTopography, Википедии, Департамента природных ресурсов Вашингтона или Национальной сети экологических обсерваторий.

модулей GETSI с данными лидара:

InSAR (Интерферометрический радар с синтезированной апертурой) InSAR использует изменение фазы между последовательными изображениями для измерения изменений уровня земли.В этом примере показан метод, применяемый для измерения изменений, вызванных землетрясением.

Provenance: Gareth Funning (University of California Riverside)
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ You может повторно использовать этот элемент в некоммерческих целях, если вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Интерферограмма, показывающая вулканическое поднятие примерно в 3 милях к западу от Саут-Систер, штат Орегон.Геологическая служба США (К. Уикс).

Provenance: Интерферограмма подготовлена ​​C. Wicks из USGS - http://volcanoes.usgs.gov/activity/methods/insar/
Повторное использование: Этот элемент предлагается под лицензией Creative Commons Attribution-NonCommercial-ShareAlike http: //creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

InSAR измеряет деформацию земли с помощью двух или более изображений радара с синтезированной апертурой (SAR).Чаще всего изображения поступают с радарных спутников, находящихся на околоземной орбите, но этот метод также можно использовать с самолетов или наземных датчиков. Изменение фазы радиолокационного сигнала между повторяющимися изображениями позволяет измерять деформацию в сантиметровом масштабе на промежутках от нескольких дней до нескольких лет и на больших территориях. Хотя осложнения могут возникать из-за влажности поверхности земли и изменения атмосферных условий, радар способен проникать в облака и предоставлять данные на больших площадях, что делает его хорошим дополнением к другим методам, таким как GPS, лидар и SfM, которые имеют более ограниченную пространственную протяженность.InSAR имеет приложения для мониторинга стихийных бедствий (например, землетрясений, вулканов и оползней), измерения оседания земли и даже оценки уровня поверхностных вод и скорости ледникового льда. Узнайте больше об InSAR из статьи М. Притчарда Physics Today, инфографики и плаката UNAVCO InSAR, информационного бюллетеня USGS InSAR или Википедии.

модулей GETSI с данными InSAR:

GRACE (Эксперимент по восстановлению гравитации и климату) и дополнительная миссия Художественное исполнение спутников GRACE-FO.Подобно оригинальной GRACE, спутники-близнецы GRACE-FO следуют друг за другом на орбите вокруг Земли на расстоянии около 137 миль (220 км). Точное расстояние зависит от изменяющегося гравитационного поля внизу и постоянно измеряется лазером между спутниками.

Происхождение: НАСА https://gracefo.jpl.nasa.gov/mission/overview/
Повторное использование: Этот элемент находится в общественном достоянии и может быть использован повторно без ограничений.

Одна из первых созданных компанией GRACE гравитационных карт Земли на основе данных за 111 дней в 2003 году.ГРЕЙС.

Provenance: Kate Shervais, Colorado State University
Reuse: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать повторно этот элемент для некоммерческих целей, если вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Измерение гравитационного поля Земли также является элементом геодезии. Появление спутниковых измерений силы тяжести сильно повлияло на нашу способность определять изменяющееся распределение массы на Земле.GRACE (Эксперимент по восстановлению гравитации и климату) привел к беспрецедентным наблюдениям. Гравитационное поле Земли неравномерно, что отражает распределение массы на нашей планете. Орбита спутников-близнецов GRACE нарушена из-за неравномерного гравитационного поля, изменяющего расстояние между спутниками. Это изменение расстояния измеряется с помощью системы микроволнового измерения дальности. Этот метод используется в тандеме с GPS, так как каждый из спутников оснащен высокоточным приемником GPS. Эта мера силы тяжести Земли может использоваться для многих приложений, но изменения в грунтовых водах и массе льда были двумя из самых значительных.Они помогли исследователям понять последствия изменения климата и изменения грунтовых вод с течением времени. Данные GRACE можно использовать для отслеживания распределения воды по поверхности Земли на континентах, объема ледяного покрова, изменения уровня моря, океанских течений и динамики внутренней структуры Земли. Узнайте больше о GRACE на официальном веб-сайте GRACE, на веб-сайте GRACE Follow-on, в брошюре о GRACE для непрофессионала или на страницах миссий НАСА.

модулей GETSI с данными GRACE:

Высотомер: лед и уровень моря

Спутниковая альтиметрия измеряет расстояние между спутником и целью на Земле.Обычно это делается с помощью радиолокационной системы измерения высоты, которая посылает радиолокационный импульс к поверхности Земли, а затем измеряет время, которое требуется импульсу, чтобы достичь поверхности и вернуться, чтобы оценить расстояние. Конкретные характеристики сигнала, такие как величина и форма сигнала, дают информацию о типе исследуемой поверхности. Существуют и другие системы альтиметрии, такие как ATLAS (Advanced Topographic Laser Altimeter System), лазерная система альтиметрии на ICESat-2 (запланирована на весну 2017 года).

Эти методы используются для измерения как уровня моря, так и высоты льда.Эти спутниковые миссии длятся годами, поэтому сбор данных идеально подходит для изучения изменения климата, поскольку лед и уровень моря можно измерять с течением времени. Эти данные можно сравнить с данными, полученными от GRACE, чтобы получить полную картину того, как меняются объем льда и уровень моря. Для получения дополнительной информации см. Страницу Aviso + по основам альтиметрии и страницу ICESat-2 для получения информации о спутниковой альтиметрии со льдом. Некоторые примеры результатов спутниковой альтиметрии есть в JPL, NOAA и CU Sea Level Research Group.

модулей GETSI с данными альтиметрии:

Фотограмметрия структуры из движения (SfM) Карикатура на технику SfM, основанная на съемке с самых разных ориентаций и расстояний. Местоположение камеры для каждой фотографии рассчитывается с использованием функций, распознаваемых на нескольких фотографиях.

Происхождение: Кейт Шервейс, Государственный университет Колорадо
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http: // creativecommons.org / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

Пример модели SfM из зоны сдвига Pofadder. Синие прямоугольники указывают рассчитанные положения камеры; модель представляет собой трехмерное облако точек с наложенной фотографией. Джейми Киркпатрик.

Происхождение: Кейт Шервейс, Государственный университет Колорадо
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http: // creativecommons.org / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

Структура из движения или SfM - это фотограмметрический метод создания трехмерных моделей объекта или топографии на основе перекрывающихся двухмерных фотографий, сделанных из разных мест и ориентаций, для восстановления сфотографированной сцены. Области применения SfM очень разнообразны: от многих под-областей наук о Земле (геоморфология, тектоника, структурная геология, геодезия, горное дело) до археологии, архитектуры и сельского хозяйства.В дополнение к орто-ректифицированным изображениям, SfM создает набор данных плотного облака точек, который во многом похож на тот, который создается с помощью бортового или наземного лидара. Преимуществами SfM являются его относительная стоимость по сравнению с лидаром, а также простота использования. Единственное необходимое оборудование - это камера. Для обработки данных необходимы компьютер и программное обеспечение. Кроме того, воздушная платформа, такая как воздушный шар или дрон, также может быть полезна для приложений топографической картографии. Поскольку SfM полагается на оптические изображения, он не может генерировать топографические продукты «голой земли», которые являются типичными производными технологий на основе лидаров - таким образом, SfM обычно лучше всего подходит для участков с ограниченной растительностью.Узнайте больше о структуре из движения из GETSI Introduction to SfM.

модулей GETSI с данными SfM:

метров: скважина, наклон, ползучесть Карта сети скважинных тензометров Plate Boundary Observatory на западе США. Эта сеть используется для изучения трехмерного поля деформации, возникающего в результате активной деформации Тихоокеанской и Североамериканской плит.

Происхождение: UNAVCO https://www.unavco.org/instrumentation/geophysical/borehole/bsm/bsm.html
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете повторно использовать этот элемент в некоммерческих целях, пока поскольку вы указываете авторство и предлагаете любые производные работы по аналогичной лицензии.

Инженеры гавайской вулканической обсерватории USGS опускают наклономер в глубокую скважину на западном фланге Мауна-Лоа, которая поможет отслеживать вулканическую активность.

Provenance: USGS https://www.usgs.gov/media/images/creative-engineering-helps-hvo-monitor-mauna-loa-volcano
Повторное использование: Этот элемент находится в общественном достоянии и может использоваться повторно. без ограничений.

Три типа измерителей могут дополнять данные, собранные с использованием геодезических методов, описанных выше: скважинные деформографы, наклономеры и измерители ползучести.

Скважинные деформографы устанавливаются в скважинах и измеряют очень небольшие изменения размеров скважины на глубине, отражая постоянную деформацию земной коры.Это достигается путем измерения изменения диаметра или объема тензометра, установленного в стволе скважины. Обычно тензометрические датчики устанавливаются на глубине 200 м в скважине диаметром 15 см. Над деформографом установлен сейсмометр. В скважине также может быть установлен наклономер. Для получения дополнительной информации см. Страницу тензометра UNAVCO или страницу инструментов USGS.

Наклономеры - очень чувствительные инклинометры, которые измеряют отклонение от горизонтали. Их можно устанавливать в скважинах с помощью скважинных тензометров.Наклономер также может быть установлен на поверхности земли. Наклономеры обычно используются для мониторинга разломов, вулканов, плотин, оценки потенциальных оползней, а также ориентации и объема трещин гидроразрыва. Для получения дополнительной информации см. Страницу Tiltmeter UNAVCO или страницу инструментов USGS.

Измерители ползучести

используются исключительно для количественного определения скольжения при повреждении. Два памятника установлены по обе стороны разлома на расстоянии 30 метров друг от друга. Проволока соединяет два памятника, и смещение провода представляет собой перемещение по разлому.Для получения дополнительной информации см. Страницу USGS.

модулей GETSI с данными наклона:

Другие ресурсы

.

Simple English Wikipedia, бесплатная энциклопедия

Старая геодезическая колонна (1855 г.) в Остенде, Бельгия Мюнхенский архив с литографическими пластинами карт Баварии

Геодезия , которую иногда называют геодезия , - это научный раздел географии, который занимается описанием поверхности земли. Фридрих Роберт Хельмерт (1843-1917), основавший эту дисциплину, говорил об измерении и картировании поверхности Земли. Сюда входит его геометрическое описание (геоид), а также измерение и описание его гравитационного поля.Некоторые люди, участвующие в этой дисциплине, смотрят на геодинамику, корки, приливы или движение географических полюсов.

Эту короткую статью о месте или объекте можно сделать длиннее. Вы можете помочь Википедии, добавив к ней . .

Международная ассоциация геодезии

Сегодня глобальные навигационные спутниковые системы (GNSS) обеспечивают доступ к точным координатам точек в глобальной системе отсчета в любое время и в любом месте на поверхности Земли с точностью до сантиметра и без дополнительных измерений в ближайших опорных точках.

Что касается пользователей, это технологическое развитие стимулировало появление новых приложений, требующих еще большей точности и лучшего доступа к геодезически определенным позициям.В масштабах от местного до регионального, такие приложения, как землеустройство, мониторинг инфраструктуры, предотвращение и смягчение воздействий экологических опасностей, а также многочисленные технические приложения требуют более или менее мгновенного доступа к геодезическим позициям в надежной системе отсчета с точностью до сантиметра или лучше. . Уже сегодня экономическая выгода от геодезической системы координат огромна.

Геодезия обеспечивает основу для всех наблюдений Земли, а также важнейших наблюдений за изменениями геометрии Земли, гравитационного поля и вращения, которые связаны с переносом массы в системе Земли и динамикой системы.Следовательно, геодезия имеет решающее значение для удовлетворения многих требований к наблюдениям за глобальными изменениями и наблюдениям, поддерживающим исследования системы Земля. Обеспечивая основу для точного позиционирования, геодезия также имеет решающее значение для поддержки многих процессов в современном обществе.

В настоящее время геодезия сталкивается с растущим спросом со стороны науки, сообщества наблюдателей Земли и общества в целом на улучшенные услуги, наблюдения и продукты. Большинство из этих требований связаны с повышенной точностью, большей надежностью (включая решение вопроса об ответственности) и улучшенным доступом к системе отсчета.

Исторически геодезия ограничивалась определением формы Земли, ее гравитационного поля и ее вращения, включая их изменения во времени. Благодаря современным приборам и методам, объем геодезии расширился, чтобы включить источники наблюдаемых изменений в этих «трех столпах», то есть динамики и массопереноса в системе Земли. В этом более широком масштабе появляются новые пути, по которым геодезия может способствовать научному пониманию системы Земли, а также развитию, функционированию и безопасности общества в целом.

В большой степени геодезия - это «наука о предоставлении услуг». В прошлом основными «заказчиками» геодезии были специалисты по геодезии и картографии, а сегодня геодезия обслуживает все науки о Земле, включая геофизические, океанографические, атмосферные и экологические сообщества.

Geodesy обеспечивает уникальную основу для мониторинга и, в конечном итоге, понимания системы Земли в целом. Современные космические геодезические методы хорошо подходят для наблюдений за явлениями в глобальном и региональном масштабах и, таким образом, являются важным дополнением к традиционным системам наблюдения на месте.

Геодезические наблюдения и продукция имеют решающее значение для использования преимуществ наблюдения Земли, поскольку геодезия обеспечивает основу для глобальной геодезической системы координат (такой как ITRF), которая может использоваться всеми системами наблюдения Земли для мониторинга атмосферы, океана и других объектов. ресурсов, что позволяет проводить измерения в глобальной согласованной системе отсчета. Мониторинг величин, относящихся к геологическим опасностям, глобальному водному циклу, климату и погоде, энергии и даже здоровью, в решающей степени зависит от быстрого и надежного доступа к системе отсчета.

.

Что такое геодезия

Слово геодезия от греческого geodaisia ​​буквально означает деление Земли, и его простейшее определение - изучение формы и размеров Земли. Однако общепринятым и более формальным определением является: «Геодезия - это дисциплина, которая занимается измерением и представлением Земли, включая гравитационное поле, в трехмерном изменяющемся во времени пространстве». Это определение охватывает все исследования и их техники.

Однако обычно считается, что геодезия занимается только измерениями и отображением больших участков поверхности Земли.
В то время как геодезия имеет дело с меньшими участками, где влияние кривизны Земли минимально и им можно пренебречь.

Геодезия также имеет тесные связи с геофизикой и геодинамикой. Гравитационное поле Земли влияет на геодезические измерения и определяет форму Земли через геоид. Вариации гравитационного поля также могут многое рассказать геофизикам о структуре земной коры и мантии. Геодезические инструменты (такие как GPS) могут использоваться для определения вертикальных и горизонтальных движений земной коры, которые связаны с тектонической и сейсмической активностью.

Для получения дополнительной информации посетите эти сайты:

http: // www.iag-aig.org/

http://oceanservice.noaa.gov/facts/geodesy.html

.

Интернет-ресурсов по геодезии: что такое геодезия?

Интернет-ресурсы по геодезии: что такое геодезия? [Главная | Что такое геодезия | Геодезия, астрономия | GPS | Геодезия, карты, справочники | Публикации | Наука, математика | Компьютеры | Справка | Интернет-поиск | Новости, Погода, Юмор]


Краткий оксфордский словарь

геодезия. п. раздел математики, имеющий дело с фигурами и областями земля или большие ее части.


Википедия

Геодезия...отрасль наук о Земле, это научная дисциплина, занимается измерением и представлением Земли, включая ее гравитационное поле в трехмерном изменяющемся во времени пространстве. Геодезисты также изучают геодинамические явления, такие как движение земной коры, приливы и полярные движение. Для этого они создают глобальные и национальные сети управления, используя космические и наземные методы, полагаясь на системы отсчета и координаты системы.

Полная статья


Энциклопедия науки и технологий, издание 2001 г., Academic Press, 2000

Геодезия - это наука, по сути, древнейшая (гео-) наука о Земле.Он родился из страх и любопытство, движимые желанием предсказать естественные события и вызовы для понимания этих событий. Классическое определение, согласно к одному из «отцов геодезии» гласит: «Геодезия - это наука об измерениях. и изображая земную поверхность »[Helmert, 1880, p.3]. В настоящее время мы Под геодезией понимают несколько шире. Это захвачено следующее определение [Vanicek and Krakiwsky, 1986, p.45]:

"Геодезия - это дисциплина, которая занимается измерением и представлением Земля, включая ее гравитационное поле, в трехмерном изменяющемся во времени пространство."

Полная статья Петра Ваничека


Определение от отдела геодезических изысканий Министерства природных ресурсов Канады

Геодезия - это изучение формы и размера земли.

Полная статья


Из «Геодезии», 2-е издание Вольфганга Торге. деГрюйтер, 1991, стр.1

Согласно классическому определению Ф. Гельмерта (A 1880 г.), геодезия «наука об измерении и картировании земной поверхности». Это определение по сей день сохранил свою силу; он включает определение внешнее гравитационное поле Земли, а также поверхность дна океана.С участием это определение, которое может быть расширено, чтобы включить временные вариации Земля и ее гравитационное поле, геодезия может быть включена в науку о Земле, и также в технических науках, например, в Национальной академии наук (1978).

С развитием космонавтики геодезия превратилась в сотрудничество с другими науками для определения поверхностей другие небесные тела (луна, другие планеты). Соответствующие дисциплины: называется селенодезией и планетарной геодезией.(Биллс и Синнот, 1987).

Геодезию можно разделить на области глобальной геодезии, национальной геодезии. съемки и самолетная съемка. Глобальная геодезия отвечает за определение фигуры Земли и внешнего гравитационного поля. А геодезические изыскания закладывают основы для определения поверхность и гравитационное поле страны. Это реализуется координатами и значения силы тяжести достаточно большого количества контрольных точек, расположенных в геодезические и гравиметрические сети.В этой фундаментальной работе кривизна и необходимо учитывать гравитационное поле земли. В плоскости съемки (топографическая маркшейдерские, кадастровые, инженерные изыскания), реквизиты рельеф. При горизонтальной съемке горизонтальная плоскость обычно достаточно.

Существует тесное сотрудничество между глобальной геодезией, геодезической съемкой и самолетостроением. геодезия. Геодезическая съемка принимает параметры, определенные измерениями. земли, и его собственные результаты доступны тем, кто измеряет землю.Самолеты, в свою очередь, обычно привязаны к контрольным точкам геодезические изыскания и служат тогда, в частности, при разработке национальной карты серии и в формировании кадастров недвижимости. Измерение и оценка Методы глобальной геодезии и национальной геодезической съемки во многом идентичны. В частности, космические методы (спутниковая геодезия) все больше входят в региональные и даже местные опросы. Это также подразумевает более детальное гравитационное поле. определение в региональном и местном масштабе.

С соответствующими классификациями в области английского и французского языков. языков, понятие «геодезия» (la geodesie, «hoher Geodasie» после Helmert) относится только к глобальной геодезии и геодезическим изысканиям. В понятие «геодезия» (la topometrie, Vermessungskunde или «niedere Geodasie») после Helmert) включает съемку самолета.

Рекомендации

Национальная академия наук, Комиссия по геодезии - геодезия: Trend and перспективы. Национальная академия наук, Вашингтон, округ Колумбия, 1978.

Биллз, Б.Г., С.П. Синнотт. Планетарная геодезия. Обзоры геофизики, 25, с. 833-839, 1987.


[Главная | Что такое геодезия | Геодезия, астрономия | GPS | Геодезия, карты, справочники | Публикации | Наука, математика | Компьютеры | Справка | Интернет-поиск | Новости, Погода, Юмор]
Последняя редакция 13 мая 2009 г.

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.