ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Допустимая доза облучения для человека в рентгенах


ну сколько можно? – НаПоправку

10.04.2018

Обзор

Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.

Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.

Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:

  • костный мозг, где происходит образование клеток иммунитета и крови,
  • кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
  • ткани плода у беременной женщины.

Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.

Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач. Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?

Не пропустите другие полезные статьи о здоровье от команды НаПоправку

Email*

Подписаться

Учет доз облучения

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.

Какое обследование самое опасное?

Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/1659-07-26, утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.

Часть тела,
орган
Доза мЗв/процедуру
пленочные цифровые
Флюорограммы
Грудная клетка 0,5 0,05
Конечности 0,01 0,01
Шейный отдел позвоночника 0,3 0,03
Грудной отдел позвоночника 0,4 0,04
Поясничный отдел позвоночника 1,0 0,1
Органы малого таза, бедро 2,5 0,3
Ребра и грудина 1,3 0,1
Рентгенограммы
Грудная клетка 0,3 0,03
Конечности 0,01 0,01
Шейный отдел позвоночника 0,2 0,03
Грудной отдел позвоночника 0,5 0,06
Поясничный отдел позвоночника 0,7 0,08
Органы малого таза, бедро 0,9 0,1
Ребра и грудина 0,8 0,1
Пищевод, желудок 0,8 0,1
Кишечник 1,6 0,2
Голова 0,1 0,04
Зубы, челюсть 0,04 0,02
Почки 0,6 0,1
Молочная железа 0,1 0,05
Рентгеноскопии
Грудная клетка 3,3
ЖКТ 20
Пищевод, желудок 3,5
Кишечник 12
Компьютерная томография (КТ)
Грудная клетка 11
Конечности 0,1
Шейный отдел позвоночника 5,0
Грудной отдел позвоночника 5,0
Поясничный отдел позвоночника 5,4
Органы малого таза, бедро 9,5
ЖКТ 14
Голова 2,0
Зубы, челюсть 0,05

Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов — тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.

Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.

Как вывести радиацию после рентгена?

Обычный рентген — это воздействие на тело гамма-излучения, то есть высокоэнергетических электромагнитных колебаний. Как только аппарат выключается, воздействие прекращается, само облучение не накапливается и не собирается в организме, поэтому и выводить ничего не надо. А вот при сцинтиграфии в организм вводят радиоактивные элементы, которые и являются излучателями волн. После процедуры обычно рекомендуется пить больше жидкости, чтобы скорее избавиться от радиации.

Какова допустимая доза облучения при медицинских исследованиях?

Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?

Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.

Опасная доза облучения

Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.

Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.

Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.

Есть ли польза от радиации?

Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.

В среднем человек получает около 2–3 мЗв естественной радиации за год. Для сравнения, при цифровой флюорографии вы получите дозу, эквивалентную естественному облучению за 7–8 дней в году. А, например, полет на самолете дает в среднем 0,002 мЗв в час, да еще работа сканера в зоне контроля 0,001 мЗв за один проход, что эквивалентно дозе за 2 дня обычной жизни под солнцем.

Все материалы сайта были проверены врачами. Однако, даже самая достоверная статья не позволяет учесть все особенности заболевания у конкретного человека. Поэтому информация, размещенная на нашем сайте, не может заменить визита к врачу, а лишь дополняет его. Статьи подготовлены для ознакомительных целей и носят рекомендательный характер. При появлении симптомов, пожалуйста, обратитесь к врачу.

Напоправку.ру 2020

допустимая доза в мкР/ч, зивертах и микрозивертах в городе


Норма радиации для человека, или допустимая доза излучения – усредненная величина в мкР/ч, полученная путем клинического изучения пациентов, организм которых подвергся воздействию ионизирующего излучения. В результате проведенных научных исследований было выяснено, что, например, определенная доза радиации может отражать условные нормы или нарушения, степень ионизации, интенсивность и емкость поглощения, эквивалентность, рассчитанную по специальным коэффициентам. Уровень нормальной радиации для человека – всего лишь допустимый предел излучения в мкР/ч, на пороге которого начинаются изменения в организме.

Рядом с АЭС

Все ли виды радиации опасны

Для определения ионизирующего излучения применяется несколько специальных терминов, потому что оно может быть разного происхождения. Этим термином обозначают любые потоки, образованные фотонами, элементарными частицами или осколками атомов, которые могут ионизировать вещество. Необходимо отметить следующее:

  1. Ионизация – процесс образования ионов (положительно или отрицательно заряженных) из молекул или атомов. Результатом этого взаимодействия становится поглощение тепла и выброс электронов.
  2. Они ионизируют вещество, в которое попадают. Проникая в клеточные структуры, разрушают и дестабилизируют их. Опасным итогом этого действия становится сбой иммунитета, прекращение привычных химических взаимообменов, обеспечивающих жизнедеятельность клетки и именуемых естественным метаболизмом.
  3. Вызывая выброс свободных электронов, такой распад образует свободные радикалы. Интенсивность реакции и провокация выброса большей или меньшей интенсивности и определяет то, что принято обозначать как уровень радиации.
  4. Не все виды излучения для человека опасны. Некоторые могут становиться таковыми при определенных условиях, но обычно у них недостаточно энергии, чтобы вызвать ионизацию.
  5. Ультрафиолетовые и инфракрасные лучи, видимый свет и радиодиапазоны не могут в нормальном (основном) состоянии вызвать ионизацию.
  6. Исследования показали, что источником излучения радиации могут стать электромагнитное и рентгеновское, потоки частиц различного вида (например, нейтроны, протоны, альфа-частицы или ионы, как результат ядерного деления).

Знак

Когда говорят о радиации, имеется в виду именно ионизирующее излучение.

Оно запускает деструкцию белков, становится причиной разрушения клеток живого организма или их перерождения. В природе существуют естественные источники таких потоков, но и человек в немалой степени поучаствовал в возникновении потенциальных резервуаров, откуда могут появляться опасные частицы.

От некоторых из радиоактивных частиц существует простая и доступная защита, (при ее отсутствии и идет речь об облучении). Есть виды, дающие поток активных частиц такой интенсивности, что спастись от них практически невозможно.

Около города

Радиация и радиоактивность

Условно можно признать радиацией любые частицы, способные создавать потоки ионов (положительно или отрицательно заряженных). Обычно под этим термином понимают только достаточно большие по силе и энергии, способные действовать на живую клетку.

Они существуют до тех пор, пока не поглощаются каким-либо веществом. Под облучением подразумевают действие радиации или передачу клеткам энергии, которая есть в ионизирующем излучении. Радиоактивность – это потенциал, заложенный в неустойчивых ядрах атомов отдельных веществ.

Нормативы в мкР/ч

Распад такой неустойчивой структуры приводит к превращениям, в результате которых происходит выброс потока ионизирующего излучения (радиации). Еще в середине прошлого столетия шведский исследователь Зиверт установил, что говорить о радиационном уровне, не причиняющем повреждений, нет никакого смысла. Есть только допустимый уровень и естественный фон, который создается лучами из космоса и условно считается для человека безопасным, нормой.

В понимании ученых, норма облучения – это то, что клетка может выдержать без особых последствий (например, лучевой болезни), но не то, то можно назвать безобидным и абсолютно не оказывающим воздействия. Радиоактивность – потенциальная способность к испусканию ионизирующего излучения под воздействием свободного потока энергии. Радиация и есть эти самые потоки, свободно преодолевающие пространство, пока не поглощаются веществом или предметом.

Нормативные показатели радиации

Виды излучения и проникающая способность

Первой искусственно вызванной реакцией была проведенная с альфа-частицами. Их возникновение происходит при распаде ядер или при ионизации гелия-4. Их проникающая способность не опасна при внешнем (попадающем из космоса) облучении, однако, попадая в дыхательную или пищеварительную систему, эти частицы способны привести к лучевой болезни. Кроме них, есть множество других потенциальных опасностей:

  • бета-частицы – результат распада определенного типа, скорость распространения огромна, есть положительно и отрицательно заряженные, опасно и внешнее, и внутреннее облучение;
  • гамма – обладают огромной проникающей способностью, что приводит к лучевой болезни или онкологии;
  • нейтронное – может спровоцировать серьезные поражения при некоторых условиях.

В лесу

Облучение на рентгене, о котором постоянно предупреждают при проведении диагностики – это всего лишь искусственно получаемая энергия фотонов. Различают мягкое и жесткое рентгеновское излучение, но любое из них – мутагенный фактор, способный разрушить живые ткани, если не соблюдать норму.

Поэтому оно и признано ионизирующим, и без необходимых мер защиты может привести к лучевой болезни или новообразованиям.

Естественная и искусственная радиация

Естественной считается любая, проникающая в атмосферу из космоса. Ее уровень зависит от географического положения (на полюсах выше из-за магнитного поля Земли, а на экваторе – ниже). Выявляется при обследовании месторождений урановых руд, залежей гранита, железных руд и бокситов. Это потенциальные депо скопления радиации. Данная способность – их естественное свойство.

Радиационный фон

В городе превышение дозы радиации может наблюдаться как от географического положения и природных залежей поблизости, так и от искусственной – результата деятельности человека. Люди используют радиацию для получения энергии, изменения природных условий или ядерных испытаний, транспортировки опасных отходов, аварий на объектах.

В жилых помещениях фон несколько ниже, но многое зависит от степени радиоактивного заражения, близкого соседства объектов атомной энергии и даже направления распространения потока от места аварии или мирного применения. Испытание оружия может легко сделать смертельно опасным уровень радиации в квартире за короткий промежуток времени (минуту, час).

АЭС

Допустимые и смертельные дозы радиации

40 лет назад была введена единица радиации, названная по фамилии шведского ученого Зиверт. Один зиверт примерно равен 100 бэрам (биологическому эквиваленту рентгена). Рентген – это частицы в сухом воздухе, а бэр – в биологическом субстрате.

Допустимая норма радиации для человека – 50–60 мкР в ч в России, а в Бразилии верхняя граница – 100 микрорентген в час (мкР/ч). Допустимые нормы различаются в мирное и военное время, для солдат каждой страны ее определяет Министерство обороны. Смертельной дозой считаются разные цифры, все зависит от предельно допустимых нагрузок на отдельного человека. Называются цифры от 0 до 100 рад. Рад используется для измерения поглощенной дозы излучения на 1 г вещества.

Рядом с рекой

Таблица ниже показывает эквиваленты.

Рад Бэр Зиверт
1 рад = 0,01 Гр 1 бэр = 0,01 Зв 0,01 Зв = 100 эрг/г
1 рад = 100 эрг/г 1 бэр = 100 эрг/г 1 Зв = 100 рентген или 100 бэр

Если переводить в рентгены, то 100 мкР равняется 1 мкЗв. Еще совсем недавно облучение и уровень радиации измеряли в микрорентгенах, а теперь – в микрозивертах (мкЗв).

Нормы радиационного фона

Естественным считается значение от 0,1 до 0,16 мкЗв/ч. Относительной нормой считается не более 0,2 мкЗв/час, но многое зависит от продолжительности излучения. Показатель в 1 мЗв/час – это много, но на протяжении года – это норма, не подлежащая превышению. Хотя если эту дозу радиации разделить на количество часов в год, то это 0,57 в микрозивертах. Верхний предел допустимого, норма – это не всегда норма, скорее, уже порог к аномалии.

Таблица нормативов

Опасные дозы облучения

При 1 зиверте человек испытывает негативные симптомы. При трех – уже лысеет и получает различные расстройства, вплоть до полового бессилия. На фоне в 3,5–5 Зв умирает половина больных, причем за короткий срок – 25–30 дней. Более 500 Зв – неминуемая смерть за 2 недели, почти со 100 % вероятностью. Сколько максимально нужно для летального исхода – значение индивидуальное. СанПиН считает нормой 0,25–0,4 мкЗв/час в жилом помещении.

Нормативы радиационной безопасности

Норма радиации участка под застройку – не более 0,3 мкЗв/час. Иначе в квартирах, построенных на нем, можно будет за несколько месяцев выбрать годовую норму.

Но радиация влияет не только на жилье, она опасна для человека в квартире, на улице, на открытой местности, может присутствовать в продуктах, питьевой воде и так далее.

Симптомы и степени тяжести облучения

Лучевую болезнь дифференцируют на 4 степени тяжести. На первой, легкой, стационар требуется редко: это только начальная, первичная реакция организма, с однократной рвотой и тошнотой. На средней, после первичной реакции, развивается скрытая форма, с общим ухудшением самочувствия, расстройством сердечной деятельности и температурой.

Рядом с деревней

Третья стадия – развитие острой формы, которое гипотетически может перейти в хроническую, но в большинстве случаев закачивается летальным исходом и только иногда – частичным выздоровлением.

Доза облучения при рентгене, КТ, МРТ и УЗИ: ну сколько можно?

Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.

Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.

Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:

  • костный мозг, где происходит образование клеток иммунитета и крови,
  • кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
  • ткани плода у беременной женщины.

Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.

Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач. Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?

Учет доз облучения

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.

Какое обследование самое опасное?

Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/1659-07-26, утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.

Часть тела, орган Доза мЗв/процедуру
пленочные цифровые
Флюорограммы
Грудная клетка 0,5 0,05
Конечности 0,01 0,01
Шейный отдел позвоночника 0,3 0,03
Грудной отдел позвоночника 0,4 0,04
Поясничный отдел позвоночника 1,0 0,1
Органы малого таза, бедро 2,5 0,3
Ребра и грудина 1,3 0,1
Рентгенограммы
Грудная клетка 0,3 0,03
Конечности 0,01 0,01
Шейный отдел позвоночника 0,2 0,03
Грудной отдел позвоночника 0,5 0,06
Поясничный отдел позвоночника 0,7 0,08
Органы малого таза, бедро 0,9 0,1
Ребра и грудина 0,8 0,1
Пищевод, желудок 0,8 0,1
Кишечник 1,6 0,2
Голова 0,1 0,04
Зубы, челюсть 0,04 0,02
Почки 0,6 0,1
Молочная железа 0,1 0,05
Рентгеноскопии
Грудная клетка 3,3
ЖКТ 20
Пищевод, желудок 3,5
Кишечник 12
Компьютерная томография (КТ)
Грудная клетка 11
Конечности 0,1
Шейный отдел позвоночника 5,0
Грудной отдел позвоночника 5,0
Поясничный отдел позвоночника 5,4
Органы малого таза, бедро 9,5
ЖКТ 14
Голова 2,0
Зубы, челюсть 0,05

 

Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов — тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.

Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.

Как вывести радиацию после рентгена?

Обычный рентген — это воздействие на тело гамма-излучения, то есть высокоэнергетических электромагнитных колебаний. Как только аппарат выключается, воздействие прекращается, само облучение не накапливается и не собирается в организме, поэтому и выводить ничего не надо. А вот при сцинтиграфии в организм вводят радиоактивные элементы, которые и являются излучателями волн. После процедуры обычно рекомендуется пить больше жидкости, чтобы скорее избавиться от радиации.

Какова допустимая доза облучения при медицинских исследованиях?

Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?

Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.

Опасная доза облучения

Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.

Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.

Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.

Есть ли польза от радиации?

Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.

В среднем человек получает около 2–3 мЗв естественной радиации за год. Для сравнения, при цифровой флюорографии вы получите дозу, эквивалентную естественному облучению за 7–8 дней в году. А, например, полет на самолете дает в среднем 0,002 мЗв в час, да еще работа сканера в зоне контроля 0,001 мЗв за один проход, что эквивалентно дозе за 2 дня обычной жизни под солнцем.

В чём измеряется радиация, нормы для человека: в помещении, природе

Радиоактивное излучение окружает нас повсюду, в какой-то мере его имеют все предметы и даже сам человек. Представляет опасность не сама радиация, а когда её значение превысит некоторые значения. Одно дело, если человек подвергся радиации кратковременно и совсем другое, когда она воздействует длительное время, например, проживает в заражённой квартире. Забегая вперёд скажем, что для человека безопасная норма радиации определена в пределах 30 микрорентген в час (мкР/ч). Существуют ещё несколько единиц измерения. Другие нормы и единицы её измерения обсудим ниже.

Что такое радиоактивность

Содержание статьи

Что такое радиация

Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.

Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.

Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

В чём измеряется радиация

Единиц измерения радиации несколько, но в основном на пользовательском уровне предпочитается рентген, ассоциативно связанный с ней. На таблице ниже они приведены. Рассматривать подробно их не будем, так как при необходимости узнать радиоактивный фон в квартире будут нужны, пожалуй, только 2.

Виды радиации

  1. Зиверт – эквивалентная доза. 1 Зв = 100 Р = 100 БЭР = 1 Гр.
  2. Рентен — внесистемная единица — Кл/кг. 1 Р = 1 БЭР = 0,01 Зв.
  3. БЭР – аналог Зиверт, устаревшая внесистемная единица. 1 БЭР = 1 Р = 0,01 Зв.
  4. Грей – мощность поглощённой дозы – Дж/кг. 1 Гр = 100 Рад.
  5. Рад – доза поглощённой радиации Дж/кг. 1 рад – это 0,01 (1 рад = 0,01 Гр).

На практике больше в ходу системная единица Зиверт (Зв), мЗв – миллизиверт, мкЗв – микрозиверт, названная в честь учёного Рольфа Зиверта. Зиверт единица измерения эквивалентной дозы, выражается в количестве энергии полученной на килограмм массы Дж/кг.

Выражение радиации в Рентгенах также используется хоть и менее широко. Однако конвертировать рентгены в зиверты не составит труда.

1 Рентген равен 0,0098 Зв, но обычно значение в зиверт округляют до 0,01, что упрощает перевод. Так как это очень большие дозы в реальности пользуются гораздо меньшими значениями м – милли 10-3 и мк – микро 10-6 . Отсюда 100 мкР = 1 мкЗв, или 50 мкР = 0,5 мкЗв. То есть используется множитель 100. Когда нужно перевести микрозиверты в микрорентгены нужно какое-то значение умножить на сто, а если нужно перевести рентгены в зиверты, то необходимо поделить.

Уровень радиации которую может получить человека на процедурах и жизни

Надзор и нормативные документы

Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.

В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.

Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
  • Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.

Доза радиации которую получает человек в течении года

Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Доза. Зиверт Воздействие на человека
1–2 Лёгкая форма лучевой болезни.
2–3 Лучевая болезнь. Смертность в течение первого месяца до 35%.
3–6 Смертность до 60%.
6–10 Летальный исход 100% в течение года.
10–80 Кома, смерть через полчаса
80 и более Мгновенная смерть

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.

Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Чем проверить наличие радиации

Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.

Бытовые дозиметры для измерения радиации

Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.

Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.

Опасен ли рентген - блог медицинского центра ОН Клиник

Рус Укр Англ Рус Укр Англ
  • Личный кабинет
  • Поиск
  • Отделения и услуги
  • Медицинские центры
    • Все центры
    • Харьков (м. Пушкинская)
    • Харьков (м. Дворец Спорта)
    • Харьков (м. Проспект Гагарина)
    • Полтава
    • Днепр
    • Мариуполь
    • Николаев
    • Одесса
    • Сумы
    • Ужгород
  • Детские отделения
    • Харьков (м. Дворец Спорта)
    • Харьков (м. Пушкинская)
    • Николаев
    • Полтава
  • Лабораторные пункты
    • Лаборатория «ОН Лаб»
    • Харьков (Алексеевка) ОН Лаб
    • Харьков (м. Пушкинская) ОН Лаб
  • О компании
  • Врачи
  • Отзывы
  • Блог
    • Все статьи
    • Гинекология
    • Дерматология
    • Урология

Автоматика. Электроэнергия. Электричество. Электрика. Электроснабжение. Программирование

Дозы радиации для человека

Излучение — это физический процесс испускания и распространения при определенных условиях в материи или вакууме частиц и электромагнитных волн. Есть два вида излучения — ионизирующее и не ионизирующее. Второе включает тепловое излучение, ультрафиолетовый и видимый свет, радиоизлучение. Ионизирующее излучение появляется в том случае, если под воздействием высокой энергии электроны отделяются от атома и образуют ионы. Когда говорят о радиоактивном облучении, то, как правило, речь идет об ионизирующем излучении. Сейчас речь пойдет именно об этом виде радиации.

Ионизирующее излучение. Попавшие в окружающую среду радиоактивные вещества называют радиационным загрязнением. Оно связано в основном с выбросами радиоактивных отходов в результате аварий на атомных электростанциях (АЭС), при производстве ядерного оружия и др.

Излучение — это физический процесс испускания и распространения при определенных условиях в материи или вакууме частиц и электромагнитных волн. Есть два вида излучения — ионизирующее и не ионизирующее. Второе включает тепловое излучение, ультрафиолетовый и видимый свет, радиоизлучение. Ионизирующее излучение появляется в том случае, если под воздействием высокой энергии электроны отделяются от атома и образуют ионы. Когда говорят о радиоактивном облучении, то, как правило, речь идет об ионизирующем излучении. Сейчас речь пойдет именно об этом виде радиации.

Ионизирующее излучение. Попавшие в окружающую среду радиоактивные вещества называют радиационным загрязнением. Оно связано в основном с выбросами радиоактивных отходов в результате аварий на атомных электростанциях (АЭС), при производстве ядерного оружия и др.

Измерение экспозиционной дозы

Радиацию нельзя увидеть, поэтому, чтобы определить наличие радиации, пользуются специальными измерительными приборами — дозиметром на основе счетчика Гейгера.
Дозиметр представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа.
Считывается число радиоактивных частиц, на экране отображается количество этих частиц в разных единицах, чаще всего — как количество радиации за определенный срок времени, например за час.

Влияние радиации на здоровье людей

Радиация вредна для всех живых организмов, она разрушает и нарушает структуру молекул ДНК. Радиация вызывает врожденные пороки и выкидыши, онкологического заболевания, а слишком высокая доза радиации влечет за собой острую или хроническую лучевую болезнь, а также смерть. Радиация — то есть ионизирующее излучение — передает энергию.

Единицей измерения радиоактивности является беккерель (1 беккерель — 1 распад в секунду) или cpm (1 cpm — распад в минуту).
Мера ионизационного воздействия радиоактивного излучения на человека измеряется в рентгенах (Р) или зивертах (Зв), 1 Зв = 100 Р = 100 бэр (бэр — биологический эквивалент рентгена). В одном зиверте 1000 миллизивертов (мЗв).

Для наглядности и примера:
1 рентген = 1000 миллирентген. (80 миллирентген = 0.08 рентген)
1 миллирентген = 1000 микрорентген. (80 микрорентген = 0.08 миллирентген)
1 микрорентген = 0.000001 рентген. (80 рентген = 80000000 микрорентген)
80 Зв = 80000 мЗв = 8000 Р
0,18 мкЗв/ч = 18 мкР/ч
80мР =800мкЗ.

Возьмём для примера расчёт (милли рентген — рентген в час) #1:
1. 80 мР в час = 0.08 Рентген
2. 100000 мР = 100 Рентген (Первые признаки лучевой болезни, по статистике, 10% людей, получивших такую дозу облучения, умирают через 30 дней. Может возникать рвота, симптомы проявляются после 3—6 часов после дозы и могут оставаться вплоть до одного дня. 10—14 дней бывает латентная фаза, ухудшается самочувствие, начинается анорексия и усталость. Иммунная система повреждена, возрастает риск инфекции. Мужчины временно бесплодны. Бывают преждевременные роды или потеря ребенка.)
3. 100/0.08 = 1250 часов/24 = 52 суток, находясь в загрязненном помещении или месте требуется, для того, чтобы появились первые признаки лучевой болезни.

Возьмём для примера расчёт (микро зиверт — микро рентген в час) #2:
1. 1 микро зиверт ( мкЗв, µSv) — 100 микро рентген.
2. Норма 0.20 мкЗв (20 мкр/ч)
Норма санитарная почти во всем мире — до 0.30 мк3в (30 мкр/ч)
Т.е 60 микрорентген = 0.00006 рентген.
3. Или 1 рентген = 0,01 Зиверт
100 рентген = 1 Зиверт.

Как пример
11.68 мкЗ/ч = 1168 микроРентгена/ч = 1.168 миллирентгена.
1000 мкР (1мР) = 10.0 мкЗв = 0,001 Рентгена.
0.30 мкЗв = 30 мкР = 0,00003 Рентгена.

КЛИНИЧЕСКИЕ ПОСЛЕДСТВИЯ ОСТРОГО (КРАТКОВРЕМЕННОГО) ГАММА-ОБЛУЧЕНИЯ, РАВНОМЕРНОГО ПО ВСЕМУ ТЕЛУ ЧЕЛОВЕКА

Исходная таблица включает также такие дозы и их эффекты:

300–500 Р — бесплодие на всю жизнь. Сейчас принято считать, что при дозе 350 Р у мужчин возникает временное отсутствие сперматозоидов в сперме. Полностью и навсегда сперматозоиды исчезают только при дозе 550 Р т,е при тяжелой форме лучевой болезни;

300–500 Р локальное облучения кожи, выпадают волосы, краснеет или слезает кожа;

200 Р снижение количества лимфоцитов на долгое время (первые 2–3 недели после облучения).

600-1000 Р смертельная доза, вылечиться невозможно, можно только продлить жизнь на несколько лет с тяжелыми симптомами. Наступает практически полное разрушение костного мозга, требующее трансплантации. Серьезное повреждение пищеварительного тракта.

10-80 Зв (10000-80000 мЗв, 1000-5000 Р). Кома, смерть. Смерть наступает через 5-30 минут.

Более 80 Зв (80000 мЗв, 8000 Р). Мгновенная смерть.

Миллизиверты атомщиков и ликвидаторов

50 миллизивертов — это годовая предельно допустимая доза облучения операторов на атомных объектах.
250 миллизивертов — это предельно допустимая аварийная доза облучения для профессионалов-ликвидаторов. Необходимо лечение.
300 мЗв — первые признаки лучевой болезни.
4000 мЗв — лучевая болезнь с вероятностью летального исхода, т.е. смерти.
6000 мЗв — смерть в течение нескольких дней.


1 миллизиверт (мЗв) = 1000 микрозивертов (мкЗв).
1 мЗв — это одна тысячная Зиверта (0,001 Зв).

Радиоактивность: альфа-, бета-, гамма-излучение

Атомы вещества состоят из ядра и вращающихся вокруг него электронов. Ядро – это устойчивое образование, которое сложно разрушить. Но, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, разное и их действие на человека и меры защиты от него.

Альфа-излучение

Поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более 5 см и, как правило, полностью задерживается листом бумаги или внешним слоем кожи. Если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в апреле 1986 года пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренности человека.

Гамма-излучение

Фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами окружающей среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние органы. Толстые слои железа, бетона и свинца, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

Без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом.

Поэтому общее правило одно – избегать подобных мест.

Для справки и общей информации:
Вы летите в самолете на высоте в 10 км, где фон порядка 200-250 мкр/ч. Не сложно посчитать, какая доза будет при двух часовом перелёте.


Основными долгоживущими радионуклидами, обусловившими загрязнение с ЧАЭС, являются:

Стронций-90 (Период полураспада ~28 лет)
Цезий-137 (Период полураспада ~31 лет)
Америций-241 (Период полураспада ~430 года)
Плутоний-239 (Период полураспада — 24120 лет)
Прочие радиоактивные элементы (в том числе изотопы Йод-131, Кобальт-60, Цезий-134) к настоящему времени из-за относительно коротких периодов полураспада уже практически полностью распались и и не влияют на радиоактивное загрязнение местности.

(Просмотрено 271579 раз)

источников и доз излучения | Радиационная защита

Источники излучения излучения Энергия, выделяемая в виде частиц или лучей. все время вокруг нас. Некоторые из них естественны, а некоторые созданы руками человека. Количество радиации, поглощаемой человеком, измеряется дозой. Доза - это количество энергии излучения, поглощенное телом. Для получения информации о дозе см. Основы излучения.

На этой странице:


Фоновое излучение

Фоновая радиация Фоновая радиация Радиация, которая всегда присутствует в окружающей среде.Большая часть фонового излучения возникает естественным образом, а небольшая часть - от антропогенных элементов. присутствует на Земле во все времена. Большая часть фонового излучения возникает естественным образом из минералов, а небольшая часть - из антропогенных элементов. Радиоактивные минералы, встречающиеся в природе в земле, почве и воде, производят радиационный фон. Человеческое тело даже содержит некоторые из этих природных радиоактивных минералов. Космическое излучение из космоса также влияет на радиационный фон вокруг нас.Уровни естественного радиационного фона могут сильно различаться от места к месту, а также могут изменяться в одном и том же месте с течением времени.

Космическое излучение

Космическое излучение исходит от очень энергичных частиц Солнца и звезд, которые входят в атмосферу Земли. Некоторые частицы попадают на землю, а другие взаимодействуют с атмосферой, создавая различные типы излучения. Уровни излучения увеличиваются по мере приближения к источнику, поэтому количество космического излучения обычно увеличивается с увеличением высоты.Чем выше высота, тем выше доза. Вот почему люди, живущие в Денвере, штат Колорадо (высота 5280 футов), получают более высокую годовую дозу космического излучения, чем те, кто живет на уровне моря (высота 0 футов). Узнайте больше о космической радиации в RadTown, веб-сайте EPA по радиационному образованию для студентов и преподавателей.

Радиоактивные материалы на Земле и в наших телах

Уран и торий, встречающиеся в природе в природе, называются первичными. первичными. Существующие с момента образования Солнечной системы, встречающиеся в природе.радионуклид радионуклид Радиоактивные формы элементов называются радионуклидами. Радий-226, цезий-137 и стронций-90 являются примерами радионуклидов и являются источником земного излучения. Следы урана, тория и продуктов их распада можно найти повсюду. Узнайте больше о радиоактивном распаде. Уровни земной радиации различаются в зависимости от местоположения, но районы с более высокими концентрациями урана и тория в поверхностных почвах обычно имеют более высокие уровни доз.

В организме могут быть обнаружены следы радиоактивных материалов, в основном природного калия-40.Калий-40 содержится в пище, почве и воде, которые мы принимаем. Наши тела содержат небольшое количество радиации, потому что тело метаболизирует нерадиоактивные и радиоактивные формы калия и других элементов одинаковым образом.

Искусственные источники

Небольшая часть фонового излучения возникает в результате деятельности человека. Незначительное количество радиоактивных элементов рассеялось в окружающей среде в результате испытаний ядерного оружия и аварий, подобных той, что произошла на Чернобыльской атомной электростанции в Украине.Ядерные реакторы выделяют небольшое количество радиоактивных элементов. Радиоактивные материалы, используемые в промышленности и даже в некоторых потребительских товарах, также являются источником небольшого фонового излучения. Узнайте больше о радиации и потребительских товарах.

Начало страницы

Средние дозы и источники в США

Все мы ежедневно подвергаемся облучению от естественных источников, таких как минералы в земле, и искусственных источников, таких как медицинские рентгеновские лучи. По данным Национального совета по радиационной защите и измерениям (NCRP), средняя годовая доза облучения на человека в США.S. составляет 6,2 миллизиверта (620 миллибэр). На круговой диаграмме ниже показаны источники этой средней дозы.

Источник: Национальный совет по радиационной защите и измерениям (NCRP), отчет № 160, выход

.

Большая часть нашей средней годовой дозы приходится на естественный фоновый радиационный фон Фоновый радиационный фон Радиация, которая всегда присутствует в окружающей среде. Большая часть фонового излучения возникает естественным образом, а небольшая часть - от антропогенных элементов. источники:

  • Радиоактивные газы радон и торон, которые образуются при радиоактивном распаде других природных элементов.
  • Космос (космическое излучение).
  • Радиоактивные минералы природного происхождения:
    • Внутренний (в вашем теле).
    • Наземный (в земле).

Еще 48 процентов дозы в среднем американца приходится на медицинские процедуры. Эта сумма не включает дозу лучевой терапии, применяемую при лечении рака, которая обычно во много раз больше.

Начало страницы

Используйте калькулятор дозы радиации, чтобы оценить годовую дозу от источников ионизирующего излучения.

доз от обычных источников излучения

На следующей диаграмме сравниваются дозы облучения от обычных источников излучения, как естественных, так и техногенных.

Источники:

Национальный совет по радиационной защите и измерениям (NCRP), Отчет № 160 Выход

Международная комиссия по радиологической защите, публикация 103, выход

Начало страницы

.

Понимание радиационного риска по результатам визуализационных тестов

В больших дозах радиация может вызвать серьезное повреждение тканей и повысить риск развития рака в будущем. Низкие дозы радиации, используемые для визуализации, могут немного повысить риск рака у человека, но важно оценить этот риск в перспективе. Вот ответы на некоторые из наиболее распространенных вопросов, которые возникают у людей о радиационных рисках, связанных с тестами на визуализацию.

Сколько радиации получает средний человек в повседневной жизни?

Мы постоянно подвергаемся облучению от ряда источников, включая радиоактивные материалы в окружающей среде, газ радон в наших домах и космические лучи из космоса.Это называется фоновой радиации и варьируется в зависимости от страны.

Средний американец в течение года подвергается облучению от естественных источников примерно на 3 мЗв ( миллизивертов ). (Миллизиверт - это мера радиационного облучения.) Но радиационный фон варьируется в Соединенных Штатах и ​​во всем мире.

Самым крупным источником фонового излучения (обычно около 2 мЗв в год) является радон, природный газ, который содержится в наших домах.Уровни радона сильно различаются от одной части страны к другой.

Местоположение также играет роль, потому что атмосфера Земли блокирует некоторые космические лучи. Это означает, что пребывание на большей высоте увеличивает уязвимость человека. Таким образом, люди, живущие в более высоких частях Нью-Мексико и Колорадо, подвергаются большему воздействию радиации в год (примерно на 1,5 мЗв больше), чем люди, живущие ближе к уровню моря. А 10-часовой полет на самолете увеличивает воздействие космических лучей примерно на 0,03 мЗв.

В какой степени при визуализации человек подвергается воздействию радиации?

Величина радиационного облучения при визуализации зависит от используемой визуализации и от того, какая часть тела проверяется.Например:

  • Один рентгеновский снимок грудной клетки подвергает пациента воздействию около 0,1 мЗв. Это примерно такое же количество излучения, которому люди подвергаются естественным образом в течение примерно 10 дней.
  • Маммограмма подвергает женщину воздействию 0,4 мЗв, или примерно той суммы, которую человек ожидает получить от естественного фонового воздействия в течение 7 недель.

Некоторые другие методы визуализации имеют более высокие экспозиции, например:

  • Серия исследований нижних отделов желудочно-кишечного тракта с использованием рентгеновских лучей толстой кишки подвергает человека воздействию примерно 8 мЗв, или примерно того количества, которое ожидается в течение примерно 3 лет.
  • При компьютерной томографии брюшной полости (живота) и таза на человека действует около 10 мЗв.
  • ПЭТ / КТ подвергает вас воздействию радиации примерно 25 мЗв. Это соответствует примерно 8 годам среднего радиационного фона.

Имейте в виду, что это приблизительные данные для взрослого человека среднего роста. Исследования показали, что количество получаемого излучения может сильно различаться.

Что я могу сделать, если меня беспокоит радиация при визуализации?

Если у вас есть опасения по поводу излучения, которое вы можете получить при компьютерной томографии, ПЭТ-сканировании или любом другом визуализирующем тесте, в котором используется излучение, поговорите со своим врачом.Спросите, нужен ли тест и подходит ли он в вашем случае. Вы также можете узнать, чему вы и ваш лечащий врач можете научиться из этого.

Лучший совет в настоящее время - проходить только необходимые визуализационные тесты и стараться ограничить воздействие всех форм радиации. Если вам все-таки нужно пройти тест, который подвергнет вас воздействию радиации, спросите, есть ли способы защитить те части вашего тела, которые не отображаются. Например, свинцовый фартук можно использовать для защиты частей груди или живота от воздействия радиации, а свинцовый ошейник (известный как щитовидный щит или ошейник для щитовидной железы) можно использовать для защиты щитовидной железы.

Вы также можете вести журнал медицинских снимков, чтобы отслеживать собственную историю тестов на визуализацию и делиться ею со своими поставщиками медицинских услуг. Это может помочь предотвратить заказ повторных тестов. Примеры записей изображений для взрослых на английском и испанском языках можно найти в Интернете на сайте www.imagewisely.org.

    Помните, что МРТ и УЗИ не подвергают вас воздействию радиации.

А как насчет радиации от тестов визуализации и детей?

Дети более чувствительны к радиации, чем взрослые.Из-за этого поставщики медицинских услуг стараются снизить радиационное воздействие на педиатрических пациентов для тестов визуализации, в которых используется излучение. Тем не менее, родители могут и должны задавать вопросы перед тем, как делать какие-либо визуализационные тесты.

Вот несколько вопросов, которые следует задать:

  • Зачем моему ребенку нужна визуализация?
  • Как вы думаете, какой тип визуализации нужен моему ребенку?
  • Использует ли радиация?
  • Есть ли другие варианты, в которых не используется радиация?
  • Можно ли отрегулировать количество используемого излучения в соответствии с размером моего ребенка?

Опять же, преимущества теста должны перевешивать риски радиационного облучения.

Вы также можете вести журнал медицинских снимков, чтобы отслеживать историю тестов вашего ребенка на визуализацию и делиться ею со своими поставщиками медицинских услуг. Английскую версию для детей можно найти на сайте www.imagegently.org.

Насколько дополнительное облучение увеличивает риск рака у человека?

Радиационное облучение зависит от типа проведенного теста, площади облученного тела, размера тела, возраста и пола человека и других факторов.

Эксперты в области радиации считают, что если визуализирующие исследования действительно увеличивают риск рака, увеличение риска, вероятно, будет очень небольшим.Тем не менее, трудно понять, насколько сильное радиационное облучение может повысить риск рака у человека. В большинстве исследований радиации и риска рака изучались люди, подвергшиеся воздействию очень высоких доз радиации, такие как шахтеры урана и выжившие после атомной бомбы. Риск от низкоуровневого радиационного облучения непросто рассчитать на основе этих исследований. Мы знаем, что дети более чувствительны к радиации и должны быть максимально защищены от нее.

Поскольку радиационное облучение от всех источников может накапливаться в течение всей жизни, а радиация действительно может увеличить риск рака, визуализационные тесты с использованием радиации должны проводиться только по уважительной причине.Во многих случаях могут использоваться другие методы визуализации, такие как ультразвук или МРТ. Но если есть причина полагать, что рентген, компьютерная томография или сканирование ядерной медицины (например, ПЭТ-сканирование) - лучший способ найти рак или другие заболевания, человеку, скорее всего, помогут больше, чем маленькому доза радиации может повредить.

.

Воздействие радиации на здоровье | Радиационная защита

Ионизирующее излучение Ионизирующее излучение Излучение с такой большой энергией, что оно может выбивать электроны из атомов. Ионизирующее излучение может воздействовать на атомы в живых существах, поэтому оно представляет опасность для здоровья, повреждая ткани и ДНК в генах. обладает достаточной энергией, чтобы воздействовать на атомы в живых клетках и тем самым повредить их генетический материал (ДНК). К счастью, клетки нашего тела чрезвычайно эффективно восстанавливают эти повреждения.Однако, если повреждение не устранить правильно, клетка может умереть или в конечном итоге стать злокачественной. Дополнительная информация на испанском языке (Información relacionada en español).

Воздействие очень высоких уровней радиации, например, близость к атомному взрыву, может вызвать острые последствия для здоровья, такие как ожоги кожи и острый лучевой синдром («лучевая болезнь»). Это также может привести к долгосрочным последствиям для здоровья, таким как рак и сердечно-сосудистые заболевания. Воздействие низких уровней радиации, встречающихся в окружающей среде, не вызывает немедленных последствий для здоровья, но вносит незначительный вклад в общий риск рака.

Посетите Центры США по контролю и профилактике заболеваний (CDC) для получения дополнительной информации о возможных последствиях для здоровья облучения и заражения.

На этой странице:


Острый радиационный синдром от сильного воздействия

Очень высокий уровень радиационного облучения за короткий период времени может вызвать такие симптомы, как тошнота и рвота, в течение нескольких часов, а иногда может привести к смерти в течение следующих дней или недель. Это называется острым лучевым синдромом, широко известным как «лучевая болезнь».”

Для возникновения острого лучевого синдрома требуется очень высокое радиационное облучение - более 0,75 серый серый Серый - международная единица измерения поглощенной дозы (количества радиации, поглощенной объектом или человеком). Единица измерения поглощенной дозы в США - рад. Один серый равен 100 рад. (75 рад) рад Единица измерения в США, используемая для измерения поглощенной дозы излучения (количества излучения, поглощенного объектом или человеком). Международный эквивалент - Грей (Гр).Сто рад равны 1 грей. за короткий промежуток времени (от минут до часов). Такой уровень радиации был бы подобен получению радиации от 18 000 рентгеновских лучей грудной клетки, распределенных по всему вашему телу за этот короткий период. Острый радиационный синдром встречается редко и возникает в результате экстремальных событий, таких как ядерный взрыв, случайное обращение с высокорадиоактивным источником или его разрыв.

См. Информационный бюллетень CDC: острый лучевой синдром (ОЛБ).

Узнайте, как защитить себя от радиации.

Узнайте об источниках и дозах излучения.

Начало страницы

Радиационное воздействие и риск рака

Воздействие низкого уровня радиации не вызывает немедленных последствий для здоровья, но может вызвать небольшое увеличение риска. риск Вероятность травмы, болезни или смерти в результате воздействия опасности. Радиационный риск может относиться ко всем избыточным раковым заболеваниям, вызванным радиационным воздействием (риск заболеваемости), или только избыточным смертельным раком (риск смертности). Риск может быть выражен в процентах, дробях или десятичных числах.Например, превышение риска заболеваемости раком на 1% соответствует риску 1 из ста (1/100) или риску 0,01. рака на протяжении всей жизни. Существуют исследования, в которых отслеживаются группы людей, подвергшихся воздействию радиации, включая выживших после атомной бомбардировки и работников радиационной промышленности. Эти исследования показывают, что радиационное облучение увеличивает шанс заболеть раком, и риск увеличивается с увеличением дозы: чем выше доза, тем выше риск. И наоборот, риск рака от радиационного облучения снижается с уменьшением дозы: чем ниже доза, тем ниже риск.

Дозы облучения обычно выражаются в миллизивертах. зиверт. Международная единица измерения эффективной дозы. Единица измерения США - rem. (международные единицы) или бэр бэр Единица измерения эффективной дозы в США. Международная единица - зиверты (Зв). (Единицы США) зиверт Международная единица измерения эффективной дозы. Единица измерения в США - бэр. Доза может быть определена на основе одноразового облучения или накопленных доз облучения с течением времени.Около 99 процентов людей не заболеют раком в результате одноразового равномерного воздействия на все тело 100 миллизивертов (10 бэр) или ниже. 1 При такой дозе будет чрезвычайно сложно выявить избыток рака, вызванного радиацией, когда примерно у 40 процентов мужчин и женщин в США в какой-то момент в течение жизни будет диагностирован рак.

Низкие риски для отдельного человека могут со временем привести к неприемлемому количеству дополнительных раковых заболеваний в большой популяции.Например, в популяции в один миллион человек увеличение риска рака в течение жизни для отдельных людей в среднем на один процент может привести к 10 000 дополнительных раковых заболеваний. EPA устанавливает нормативные пределы и рекомендует руководящие принципы реагирования на чрезвычайные ситуации ниже 100 миллизивертов (10 бэр) для защиты населения США, включая уязвимые группы, такие как дети, от повышенного риска рака из-за накопленной дозы радиации в течение жизни.

Рассчитайте дозу облучения.

Узнайте об источниках и дозах излучения.

Узнайте больше о риске рака в США в Национальном институте рака.

Узнайте больше о том, как EPA оценивает риск рака, в EPA «Модели и прогнозы радиогенного рака для населения США », также известном как «Синяя книга».

Ограничение риска рака от излучения в окружающей среде

EPA основывает свои нормативные пределы и ненормативные рекомендации для воздействия ионизирующего излучения низкого уровня на население на линейной беспороговой модели (LNT).Модель LNT предполагает, что риск рака из-за воздействия низкой дозы пропорционален дозе, без порога. Другими словами, сокращение дозы вдвое снижает риск вдвое.

Использование модели LNT для целей радиационной защиты неоднократно рекомендовалось авторитетными научными консультативными органами, включая Национальную академию наук и Национальный совет по радиационной защите и измерениям. В поддержку LNT имеются данные лабораторных исследований и исследований рака у людей, подвергшихся воздействию радиации. 2,3,4,5

Начало страницы

Пути воздействия

Понимание типа полученного излучения, способа облучения человека (внешнее или внутреннее) и продолжительности облучения - все это важно для оценки воздействия на здоровье.

Риск от воздействия определенного радионуклида радионуклида Радиоактивные формы элементов называются радионуклидами. Радий-226, цезий-137 и стронций-90 являются примерами радионуклидов.зависит от:

  • Энергия испускаемого излучения.
  • Вид излучения (альфа, бета, гамма, рентгеновские лучи).
  • Его активность (как часто он излучает радиацию).
  • Независимо от того, является ли воздействие внешним или внутренним:
    • Внешнее облучение - это когда радиоактивный источник находится вне вашего тела. Рентгеновские лучи и гамма-лучи могут проходить через ваше тело, выделяя при этом энергию.
    • Внутреннее облучение - это когда радиоактивный материал попадает внутрь тела в результате еды, питья, дыхания или инъекции (в результате определенных медицинских процедур).Радионуклиды могут представлять серьезную угрозу для здоровья при вдыхании или проглатывании значительных количеств.
  • Скорость, с которой организм метаболизирует и выводит радионуклиды после проглатывания или вдыхания.
  • Где концентрируется радионуклид в организме и как долго он там остается.

Узнайте больше об альфа-частицах, бета-частицах, гамма-лучах и рентгеновских лучах.

Начало страницы

Чувствительные группы населения

Дети и плод особенно чувствительны к радиационному облучению.Клетки у детей и плода быстро делятся, что дает больше возможностей для радиации, чтобы нарушить процесс и вызвать повреждение клеток. EPA учитывает различия в чувствительности в зависимости от возраста и пола при пересмотре стандартов радиационной защиты.


1 Национальный исследовательский совет, 2006 . Риски для здоровья от воздействия низких уровней ионизирующего излучения: BEIR VII Phase 2 . Вашингтон, округ Колумбия: The National Academies Press (стр. 7).
2 Бреннер, Дэвид Дж.и др., 2003 «Риск рака, связанный с низкими дозами ионизирующего излучения: оценка того, что мы действительно знаем». Труды Национальной академии наук 100, вып. 24, (стр. 13761-13766).
3 Национальный совет по радиационной защите и измерениям, 2018. Последствия недавних эпидемиологических исследований для линейной беспороговой модели и радиационной защиты, Комментарий NCRP 27. Бетесда, Мэриленд: Национальный совет по радиационной защите и измерениям.
4 Шор, Р.Е. et al., 2018. «Последствия недавних эпидемиологических исследований для линейной беспороговой модели и радиационной защиты». Журнал радиологической защиты, № 38, (стр. 1217-1233)
5 Агентство по охране окружающей среды США, 2011 г. «Модели и прогнозы риска радиогенного рака EPA для населения США». Отчет EPA 402-R-11-001.

Начало страницы

.

Радиационный риск от медицинских изображений

перейти к содержанию
  • Поиск
  • Корзина
  • Админ
ТЕМЫ ЗДОРОВЬЯ ▼

Просмотр по теме

  • Здоровье сердца «Назад
    • Артериальное давление
    • Холестерин
    • Заболевание коронарной артерии
    • Сердечный приступ
    • Сердечная недостаточность
    • Сердечные препараты
    • Ход
  • Разум и настроение «Назад
    • Наркомания
    • СДВГ для взрослых и детей
    • Болезнь Альцгеймера и деменция
    • Беспокойство
    • Депрессия
    • Улучшение памяти
    • Психическое здоровье
    • Позитивная психология
    • Напряжение
  • Боль «Назад
    • Артрит
    • Боль в спине
    • Головная боль
    • Замена сустава
    • Другая боль
  • Оставаться здоровым «Назад
    • Старение
    • Баланс и мобильность
    • Диета и похудание
    • Энергия и усталость
    • Физические упражнения и фитнес
    • Здоровое питание
    • Физическая активность
    • Скрининговые тесты для мужчин
    • Скрининговые тесты для женщин
    • Сон
  • Рак «Назад
    • Рак молочной железы
    • Колоректальный рак
    • Другие виды рака
    • Здоровье и болезни простаты
    • Рак кожи
  • Заболевания и состояния «Назад
    • Взрослые и дети СДВГ
    • Болезнь Альцгеймера и деменция
    • Диабет
    • Здоровье пищеварительной системы
    • Болезнь сердца
    • Другие болезни и состояния
    • Остеопороз
    • Ход
    • Заболевания щитовидной железы
  • Здоровье мужчины «Назад
    • Контроль рождаемости
    • Эректильная дисфункция
    • Физические упражнения и фитнес
    • Здоровое питание
    • Сексуальное здоровье мужчин
    • Рак простаты
    • Здоровье и болезни простаты
    • Скрининговые тесты для мужчин
  • Женское здоровье «Назад
    • Контроль рождаемости
    • Здоровье и болезни груди
    • Физические упражнения и фитнес
    • Здоровое питание
    • Менопауза
    • Остеопороз
    • Беременность
    • Скрининговые тесты для женщин
    • Сексуальное здоровье женщин
  • Детское Здоровье «Назад
    • Взрослые и дети СДВГ
    • Аутизм
    • Основные этапы развития
    • Нарушения обучаемости
.

Публичное и краткое изложение | Риски для здоровья от воздействия низких уровней ионизирующего излучения: BEIR VII Phase 2

месяцев при очень низких мощностях дозы или при фракционированном облучении. Кумулятивный эффект нескольких низких доз менее 10 мГр, введенных в течение продолжительных периодов времени, требует дальнейшего изучения. Особое значение придается разработке анализов трансформации in vitro с использованием нетрансформированных диплоидных клеток человека.

Необходимость исследования 4: Идентификация молекулярных механизмов постулируемых горметических эффектов при низких дозах

Окончательные эксперименты, которые идентифицируют молекулярные механизмы, необходимы, чтобы установить, существуют ли горметические эффекты для радиационно-индуцированного канцерогенеза.

Необходимость исследования 5: Онкогенные механизмы

Необходимы дальнейшие цитогенетические и молекулярно-генетические исследования, чтобы уменьшить текущую неопределенность в отношении специфической роли радиации в многоступенчатом радиационном туморогенезе.

Необходимость исследования 6: Генетические факторы риска радиационного рака

Необходима дальнейшая работа на людях и мышах в отношении генных мутаций и функциональных полиморфизмов, которые влияют на радиационный ответ и риск рака.

Необходимость исследования 7: Наследственные генетические эффекты радиации

Необходима дальнейшая работа для установления (1) потенциальной роли процессов репарации двухцепочечных разрывов ДНК в происхождении делеций в сперматогониях и ооцитах облученных стволовых клеток (стадии зародышевых клеток, важные для оценки риска) у мышей и людей и (2) степень, в которой большие радиационно-индуцированные делеции у мышей связаны с мультисистемными дефектами развития. У людей проблема может быть исследована с использованием геномных баз данных и знаний о механизмах происхождения радиационно-индуцированных делеций для прогнозирования областей, которые могут быть особенно предрасположены к радиационно-индуцируемым делециям.

Что касается эпидемиологии, следует поощрять исследования генетических эффектов лучевой терапии при детском раке, особенно когда они могут сочетаться с современными молекулярными методами (такими как сравнительная геномная гибридизация на основе массивов).

Необходимость исследований 8: Будущие медицинские радиационные исследования

Большинство исследований медицинского излучения должны основываться на проспективно собранной информации об облучении, включая когортные исследования, а также вложенные исследования случай-контроль.В будущих исследованиях следует продолжать включать оценку индивидуальной дозы для исследуемого объекта, а также оценку неопределенности оценки дозы.

Исследования населения с высокими и средними дозами медицинского облучения особенно важны для изучения модификаторов радиационных рисков. Из-за высокого уровня радиационного воздействия на эти группы населения они также идеально подходят для изучения эффектов взаимодействия генов и излучения, которые могут сделать определенные группы населения более чувствительными к радиационно-индуцированному раку.Гены, представляющие особый интерес, включают BRCA1, BRCA2, ATM, CHEK2, NBS1, XRCC1 и XRCC3.

Проблема радиологической защиты вызывает растущее использование компьютерной томографии (КТ) и диагностического рентгеновского излучения. Если возможно, были бы особенно полезны эпидемиологические исследования следующих групп населения, подвергшихся облучению: (1) последующие исследования лиц, получающих компьютерную томографию, особенно детей; и (2) исследования младенцев, которые испытывают диагностическое воздействие, связанное с катетеризацией сердца, тех, у кого есть повторяющиеся воздействия для отслеживания их клинического статуса, и недоношенных детей, которых отслеживают на предмет развития легких с помощью повторных рентгеновских лучей.

Существует необходимость в организации всемирных консорциумов, которые использовали бы аналогичные методы при сборе данных и последующей деятельности. Эти консорциумы должны регистрировать доставленные дозы и технические данные от всех методов визуализации на основе рентгеновских лучей или изотопов, включая КТ, позитронно-эмиссионную томографию и однофотонную эмиссионную компьютерную томографию.

Необходимость исследований 9: Будущие исследования профессионального излучения

Исследования профессионального радиационного облучения, в частности, среди работников атомной промышленности, в том числе работников атомных электростанций, хорошо подходят для прямой оценки канцерогенных эффектов долгосрочного облучения людей низкого уровня.В идеале исследования профессионального облучения должны носить проспективный характер и основываться на индивидуальных оценках доз облучения в реальном времени. По возможности, следует создавать и обновлять национальные регистры радиационного облучения работников по мере накопления дополнительного радиационного облучения и смены работодателя работниками. Эти реестры должны включать, по крайней мере, ежегодные оценки дозы облучения всего тела от внешнего фотонного облучения. Эти регистры воздействия должны быть связаны с регистрами смертности и, если они существуют, национальными регистрами опухолей (и других заболеваний).Также важно продолжить наблюдение за рабочими, подвергшимися воздействию относительно высоких доз, то есть за рабочими атомного объекта «Маяк» и рабочими, участвовавшими в ликвидации последствий аварии на Чернобыльской АЭС.

Необходимость исследований 10: Будущие исследования радиации окружающей среды

В целом, дополнительные экологические исследования лиц, подвергшихся воздействию низких уровней радиации от источников окружающей среды, не рекомендуются. Однако в случае стихийных бедствий, при которых местное население подвергается воздействию необычно высоких уровней радиации, важно, чтобы было быстрое реагирование не только для предотвращения дальнейшего облучения, но и для научной оценки возможных последствий облучения.Собранные данные должны включать основную демографическую информацию о людях, оценки острого и возможного продолжающегося облучения, характер ионизирующего излучения и способы слежения за этими людьми в течение многих лет. Следует рассмотреть возможность включения сопоставимой популяции без облучения. Исследования лиц, подвергшихся воздействию окружающей среды в результате Чернобыльской катастрофы или в результате повторного-

.

13 Обобщение и потребности в исследованиях | Риски для здоровья от воздействия низких уровней ионизирующего излучения: BEIR VII Phase 2

Доступность высококачественных данных о заболеваемости раком привела к появлению нескольких анализов и публикаций, посвященных конкретным очагам рака. Эти анализы часто включают специальный патологический обзор случаев и иногда включают данные о дополнительных переменных (таких как курение для оценки риска рака легких). За последнее десятилетие были опубликованы статьи, посвященные следующим очагам рака: рак груди у женщин, рак щитовидной железы, рак слюнных желез, рак печени, рак легких, рак кожи и опухоли центральной нервной системы.Также был проведен специальный анализ смертности от рака у выживших, которые подверглись воздействию в утробе матери или в течение первых 5 лет жизни.

Конечные точки здоровья, отличные от рака, были связаны с радиационным воздействием в когорте LSS. Особо следует отметить, что взаимосвязь "доза-реакция" со смертностью от неопухолевых заболеваний была продемонстрирована в 1992 году, а последующий анализ в 1999 и 2003 годах укрепил доказательства этой связи. Статистически значимые ассоциации были замечены для категорий болезней сердца, инсульта и болезней пищеварительной, дыхательной и кроветворной систем.Этих данных было недостаточно, чтобы различить линейный доза-ответ, чисто квадратичный ответ или доза-ответ с пороговым значением 0,5 Зв.

Медицинские радиационные исследования

Были проанализированы опубликованные исследования воздействия медицинских облучений на здоровье, чтобы определить те, которые предоставляют информацию для количественной оценки риска. Особое внимание было сосредоточено на оценке риска лейкемии и рака легких, груди, щитовидной железы и желудка в зависимости от дозы облучения для сравнения с оценками, полученными от других групп населения, подвергшихся облучению, особенно выживших после атомной бомбардировки.Также была рассмотрена возможная связь между радиационным воздействием и сердечно-сосудистой смертностью и заболеваемостью.

Для рака легких значения ERR на Гр (ERRs / Гр), полученные при исследованиях острого облучения с высокой мощностью дозы, статистически совместимы и находятся в диапазоне 0,1–0,4. Трудно оценить влияние возраста на момент облучения или его продления на основе этих исследований, потому что доступно только одно исследование (когорта гемангиомы), в котором облучение имело место в очень молодом возрасте и были получены продолжительные воздействия с низкой мощностью дозы.Однако исследование больных туберкулезом, по-видимому, указывает на то, что существенное фракционирование воздействия приводит к снижению риска.

Для рака груди избыточный абсолютный риск (EARs), по-видимому, схож - порядка 9,9 на 10 4 человеко-лет (PY) на серого в возрасте 50 лет - после острых и фракционированных доз от умеренной до высокой. контакт. Влияние достигнутого возраста и возраста воздействия являются важными модификаторами риска. Избыточный риск, по-видимому, выше в группах женщин, получающих лечение от доброкачественных заболеваний груди, что позволяет предположить, что у этих женщин может быть повышенный риск радиационно-индуцированного рака груди.Когорты гемангиомы показали более низкий риск, что свидетельствует о возможном снижении рисков после длительного воздействия с низкой мощностью дозы.

Что касается рака щитовидной железы, то все исследования, дающие количественную информацию о рисках, относятся к детям, получавшим лучевую терапию по поводу доброкачественных состояний. Комбинированный анализ данных некоторых из этих когорт и данных выживших после атомной бомбардировки и двух исследований рака щитовидной железы «случай-контроль», включенных в Международное исследование выживших с раком шейки матки и Международное исследование выживших с раком у детей, дает наиболее полную информацию о рисках рака щитовидной железы. .Для субъектов в возрасте до 15 лет наблюдалась линейная доза-реакция с выравниванием или уменьшением риска при более высоких дозах, используемых для лечения рака. Общий ERR составил 7,7 Гр -1 , а EAR составил 4,4 на 10 4 Гр. На обе оценки существенно повлиял возраст на момент воздействия, при этом значительно снизился риск с увеличением возраста на момент воздействия и незначительный очевидный риск для воздействия после 20 лет. ERR, по-видимому, снизился со временем примерно через 30 лет после воздействия, но все еще был повышен к 40 годам .

Доступно мало информации о риске рака щитовидной железы в связи с воздействием йода-131 в детском возрасте. Исследования эффектов воздействия 131 I в более позднем возрасте дают мало доказательств повышения риска рака щитовидной железы после воздействия 131 I после детства.

Для лейкемии оценки ERR из исследований со средними дозами от 0,1 до 2 Гр относительно близки, в диапазоне от 1,9 до 5 Гр -1 , и являются статистически совместимыми.Оценки EAR также схожи в разных исследованиях: от 1 до 2,6 на 10 4 PY-Gy. Имеется мало информации о влиянии возраста при воздействии или продолжительности воздействия.

Для рака желудка оценки ERR варьируются от отрицательных до 1,3 Гр -1 . Однако доверительные интервалы широки, и все они перекрываются, что указывает на статистическую совместимость этих оценок.

Наконец, исследования пациентов, прошедших лучевую терапию по поводу болезни Ходжкина или рака груди, показывают, что может существовать некоторый риск сердечно-сосудистых заболеваний и смертности при очень высоких дозах и облучении с высокой мощностью дозы.Величина радиационного риска и форма кривой доза-реакция для этих исходов являются неопределенными.

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.