ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Допустимая норма облучения населения за год


допустимая доза в мкР/ч, зивертах и микрозивертах в городе


Норма радиации для человека, или допустимая доза излучения – усредненная величина в мкР/ч, полученная путем клинического изучения пациентов, организм которых подвергся воздействию ионизирующего излучения. В результате проведенных научных исследований было выяснено, что, например, определенная доза радиации может отражать условные нормы или нарушения, степень ионизации, интенсивность и емкость поглощения, эквивалентность, рассчитанную по специальным коэффициентам. Уровень нормальной радиации для человека – всего лишь допустимый предел излучения в мкР/ч, на пороге которого начинаются изменения в организме.

Рядом с АЭС

Все ли виды радиации опасны

Для определения ионизирующего излучения применяется несколько специальных терминов, потому что оно может быть разного происхождения. Этим термином обозначают любые потоки, образованные фотонами, элементарными частицами или осколками атомов, которые могут ионизировать вещество. Необходимо отметить следующее:

  1. Ионизация – процесс образования ионов (положительно или отрицательно заряженных) из молекул или атомов. Результатом этого взаимодействия становится поглощение тепла и выброс электронов.
  2. Они ионизируют вещество, в которое попадают. Проникая в клеточные структуры, разрушают и дестабилизируют их. Опасным итогом этого действия становится сбой иммунитета, прекращение привычных химических взаимообменов, обеспечивающих жизнедеятельность клетки и именуемых естественным метаболизмом.
  3. Вызывая выброс свободных электронов, такой распад образует свободные радикалы. Интенсивность реакции и провокация выброса большей или меньшей интенсивности и определяет то, что принято обозначать как уровень радиации.
  4. Не все виды излучения для человека опасны. Некоторые могут становиться таковыми при определенных условиях, но обычно у них недостаточно энергии, чтобы вызвать ионизацию.
  5. Ультрафиолетовые и инфракрасные лучи, видимый свет и радиодиапазоны не могут в нормальном (основном) состоянии вызвать ионизацию.
  6. Исследования показали, что источником излучения радиации могут стать электромагнитное и рентгеновское, потоки частиц различного вида (например, нейтроны, протоны, альфа-частицы или ионы, как результат ядерного деления).

Знак

Когда говорят о радиации, имеется в виду именно ионизирующее излучение.

Оно запускает деструкцию белков, становится причиной разрушения клеток живого организма или их перерождения. В природе существуют естественные источники таких потоков, но и человек в немалой степени поучаствовал в возникновении потенциальных резервуаров, откуда могут появляться опасные частицы.

От некоторых из радиоактивных частиц существует простая и доступная защита, (при ее отсутствии и идет речь об облучении). Есть виды, дающие поток активных частиц такой интенсивности, что спастись от них практически невозможно.

Около города

Радиация и радиоактивность

Условно можно признать радиацией любые частицы, способные создавать потоки ионов (положительно или отрицательно заряженных). Обычно под этим термином понимают только достаточно большие по силе и энергии, способные действовать на живую клетку.

Они существуют до тех пор, пока не поглощаются каким-либо веществом. Под облучением подразумевают действие радиации или передачу клеткам энергии, которая есть в ионизирующем излучении. Радиоактивность – это потенциал, заложенный в неустойчивых ядрах атомов отдельных веществ.

Нормативы в мкР/ч

Распад такой неустойчивой структуры приводит к превращениям, в результате которых происходит выброс потока ионизирующего излучения (радиации). Еще в середине прошлого столетия шведский исследователь Зиверт установил, что говорить о радиационном уровне, не причиняющем повреждений, нет никакого смысла. Есть только допустимый уровень и естественный фон, который создается лучами из космоса и условно считается для человека безопасным, нормой.

В понимании ученых, норма облучения – это то, что клетка может выдержать без особых последствий (например, лучевой болезни), но не то, то можно назвать безобидным и абсолютно не оказывающим воздействия. Радиоактивность – потенциальная способность к испусканию ионизирующего излучения под воздействием свободного потока энергии. Радиация и есть эти самые потоки, свободно преодолевающие пространство, пока не поглощаются веществом или предметом.

Нормативные показатели радиации

Виды излучения и проникающая способность

Первой искусственно вызванной реакцией была проведенная с альфа-частицами. Их возникновение происходит при распаде ядер или при ионизации гелия-4. Их проникающая способность не опасна при внешнем (попадающем из космоса) облучении, однако, попадая в дыхательную или пищеварительную систему, эти частицы способны привести к лучевой болезни. Кроме них, есть множество других потенциальных опасностей:

  • бета-частицы – результат распада определенного типа, скорость распространения огромна, есть положительно и отрицательно заряженные, опасно и внешнее, и внутреннее облучение;
  • гамма – обладают огромной проникающей способностью, что приводит к лучевой болезни или онкологии;
  • нейтронное – может спровоцировать серьезные поражения при некоторых условиях.

В лесу

Облучение на рентгене, о котором постоянно предупреждают при проведении диагностики – это всего лишь искусственно получаемая энергия фотонов. Различают мягкое и жесткое рентгеновское излучение, но любое из них – мутагенный фактор, способный разрушить живые ткани, если не соблюдать норму.

Поэтому оно и признано ионизирующим, и без необходимых мер защиты может привести к лучевой болезни или новообразованиям.

Естественная и искусственная радиация

Естественной считается любая, проникающая в атмосферу из космоса. Ее уровень зависит от географического положения (на полюсах выше из-за магнитного поля Земли, а на экваторе – ниже). Выявляется при обследовании месторождений урановых руд, залежей гранита, железных руд и бокситов. Это потенциальные депо скопления радиации. Данная способность – их естественное свойство.

Радиационный фон

В городе превышение дозы радиации может наблюдаться как от географического положения и природных залежей поблизости, так и от искусственной – результата деятельности человека. Люди используют радиацию для получения энергии, изменения природных условий или ядерных испытаний, транспортировки опасных отходов, аварий на объектах.

В жилых помещениях фон несколько ниже, но многое зависит от степени радиоактивного заражения, близкого соседства объектов атомной энергии и даже направления распространения потока от места аварии или мирного применения. Испытание оружия может легко сделать смертельно опасным уровень радиации в квартире за короткий промежуток времени (минуту, час).

АЭС

Допустимые и смертельные дозы радиации

40 лет назад была введена единица радиации, названная по фамилии шведского ученого Зиверт. Один зиверт примерно равен 100 бэрам (биологическому эквиваленту рентгена). Рентген – это частицы в сухом воздухе, а бэр – в биологическом субстрате.

Допустимая норма радиации для человека – 50–60 мкР в ч в России, а в Бразилии верхняя граница – 100 микрорентген в час (мкР/ч). Допустимые нормы различаются в мирное и военное время, для солдат каждой страны ее определяет Министерство обороны. Смертельной дозой считаются разные цифры, все зависит от предельно допустимых нагрузок на отдельного человека. Называются цифры от 0 до 100 рад. Рад используется для измерения поглощенной дозы излучения на 1 г вещества.

Рядом с рекой

Таблица ниже показывает эквиваленты.

Рад Бэр Зиверт
1 рад = 0,01 Гр 1 бэр = 0,01 Зв 0,01 Зв = 100 эрг/г
1 рад = 100 эрг/г 1 бэр = 100 эрг/г 1 Зв = 100 рентген или 100 бэр

Если переводить в рентгены, то 100 мкР равняется 1 мкЗв. Еще совсем недавно облучение и уровень радиации измеряли в микрорентгенах, а теперь – в микрозивертах (мкЗв).

Нормы радиационного фона

Естественным считается значение от 0,1 до 0,16 мкЗв/ч. Относительной нормой считается не более 0,2 мкЗв/час, но многое зависит от продолжительности излучения. Показатель в 1 мЗв/час – это много, но на протяжении года – это норма, не подлежащая превышению. Хотя если эту дозу радиации разделить на количество часов в год, то это 0,57 в микрозивертах. Верхний предел допустимого, норма – это не всегда норма, скорее, уже порог к аномалии.

Таблица нормативов

Опасные дозы облучения

При 1 зиверте человек испытывает негативные симптомы. При трех – уже лысеет и получает различные расстройства, вплоть до полового бессилия. На фоне в 3,5–5 Зв умирает половина больных, причем за короткий срок – 25–30 дней. Более 500 Зв – неминуемая смерть за 2 недели, почти со 100 % вероятностью. Сколько максимально нужно для летального исхода – значение индивидуальное. СанПиН считает нормой 0,25–0,4 мкЗв/час в жилом помещении.

Нормативы радиационной безопасности

Норма радиации участка под застройку – не более 0,3 мкЗв/час. Иначе в квартирах, построенных на нем, можно будет за несколько месяцев выбрать годовую норму.

Но радиация влияет не только на жилье, она опасна для человека в квартире, на улице, на открытой местности, может присутствовать в продуктах, питьевой воде и так далее.

Симптомы и степени тяжести облучения

Лучевую болезнь дифференцируют на 4 степени тяжести. На первой, легкой, стационар требуется редко: это только начальная, первичная реакция организма, с однократной рвотой и тошнотой. На средней, после первичной реакции, развивается скрытая форма, с общим ухудшением самочувствия, расстройством сердечной деятельности и температурой.

Рядом с деревней

Третья стадия – развитие острой формы, которое гипотетически может перейти в хроническую, но в большинстве случаев закачивается летальным исходом и только иногда – частичным выздоровлением.

Норма радиации — радиационный фон, смертельная доза для человека

Провести измерение радиоактивного излучения может любой человек, приборы сегодня легко найти в продаже.

Какова безвредная и смертельная доза радиации для человека и что нужно знать, чтобы правильно оценить опасность?

Рассмотрим ниже.

Естественная радиация

Что имеют в виду под словами «естественный радиационный фон»?

Это радиация, создаваемая солнечным, космическим излучением, а также из природных источников. Она воздействует на живые организмы непрерывно.

Биологические объекты, предположительно, к нему адаптированы. К ней не относятся скачки радиации, возникающие из-за деятельности, осуществляемой на планете людьми.

Когда говорят безопасная доза радиации, имеют в виду именно естественный фон. В какой бы зоне человек ни находился, он получает в среднем 2400 мкЗв/год из воздуха, космоса, земли, продуктов питания.

Внимание:

  1. Естественный фон – 4-15 мкР/час. На территории бывшего Союза уровень радиации колеблется от 5 до 25 мкР/ч.
  2. Допустимый фон – 16-60 мкР/час.

Космическое излучение неравномерно охватывает земной шар, нормальная интенсивность на полюсах – выше (магнитное поле земли на экваторе сильнее отклоняет заряженные частицы). А также допустимый уровень зависит от высоты над уровнем моря (экспозиционная доза солнечного излучения на высоте 10 км над уровнем моря – 0,2 мбэр/час, на высоте 20 км – 1,6).

Определённое количество получает человек при авиаперелетах: при длительности 7-8 часов на высоте 8 км на турбовинтовом самолете со скоростью ниже скорости звука доза облучения составит 50 мкЗв.

Внимание: влияние радиоактивного излучения на живые организмы полностью еще не изучено. Малые дозы не вызывают явных, доступных для наблюдения и изучения симптомов, хотя, вероятно, оказывают отложенный, системный эффект.

Вопрос влияния небольших количеств является спорным, одни специалисты утверждают, что к естественному фону человек адаптирован, другие считают, что абсолютно безопасным нельзя считать ни один предел, в том числе нормальный радиационный фон.

Виды радиационного фона

Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.

Виды фона:

  1. Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
  2. Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
  3. Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.

Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.

Как измеряют

Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма.

Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.

Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.

Единицы измерения

Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.

Всего существует 5 главных единиц:

  1. Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
  2. БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
  3. Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
  4. Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
  5. Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.

Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.

В системе СИ прописаны Грей, Зиверт.

Существует ли вообще безопасная доза?

Порога безопасности не бывает, это было установлено ученым Р. Зивертом еще в 1950 году. Конкретные цифры могут описать диапазон, предугадать их воздействие возможно только ориентировочно. Даже малая, допустимая доза может вызывать соматические или генетические изменения.

Сложность в том, что увидеть повреждения сразу возможно не всегда, они проявляются некоторое время спустя.

Все это затрудняет исследование вопроса и вынуждает ученых придерживаться осторожных, приблизительных оценок. Именно поэтому безопасный уровень облучения для человека – это диапазон значений.

Кем устанавливаются нормы

Вопросами нормирования и контроля в РФ занимаются специалисты Госкомсанэпиднадзора. В нормах СанПиНа учтены рекомендации международных организаций.

Документы:

  1. НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
  2. ОСПОР-99.

Поглощенная доза

Она показывает, какое количество радионуклидов было поглощено организмом.

Допустимые дозы облучения согласно НРБ-99:

  1. За год – до 1 мЗв, что составляет 0,57 мкЗв/ч (57 микрорентген/час). За любые пять лет подряд – не более 5 мЗв. В год — не более 5 мЗв. Если человек получил дозу облучения за год 4 мЗв, за прочие четыре года должно быть не более 1 мЗв.
  2. За 70 лет (берется как средняя продолжительность всей жизни) – 70 мЗв.

Обратите внимание: 0,57 мкЗв/ч – это верхнее значение, считается, что безопасно для здоровья – в 2 раза меньше. Оптимально: до 0,2 мЗв/час (20 микрорентген/час) – именно на эту цифру и стоит ориентироваться.

Внимание: эти нормы радиационного фона не учитывают естественный уровень, который колеблется в зависимости от местности. Порог для жителей равнин будет ниже.

Это пределы для гражданского населения. Для профессионалов они в 10 раз выше: допустимо 20 мЗв/год за 5 лет подряд, при этом необходимо, чтобы в один год выходило не более 50.

Допустимая, безопасная радиация для человека зависит и от длительности облучения: без вреда для здоровья можно провести несколько часов при внешнем облучении 10 мкЗв (1 миллирентген/час), 10-20 минут – при нескольких миллирентген. Выполняя рентген грудной клетки пациент получает 0,5 мЗв, что составляет половину годовой нормы.

Нормы согласно СанПин

Поскольку значительная часть радиации поступает с продуктами питания, питьевой водой и из воздуха, СанПиНом введены нормы, которые позволят оценить эти источники:

  1. Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
  2. В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
  3. Для продуктов норма радиации прописана детально, по каждому виду отдельно.

Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.

Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.

Что делать, если радиоактивность питьевой воды выше указанной нормы (2,2 Бк/кг)?

Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.

Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.

Бананы содержат калий-40. Однако, чтобы получить количество, которое будет опасно, необходимо употребить в пищу миллионы этих продуктов.

Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.

Смертельная доза

Какая доза будет смертельной?

В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

Существуют такие цифры:

  1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
  2. Угроза для жизни – дозировка более 3000 мЗв.
  3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
  4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

Однократное облучение приведет к:

  • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
  • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
  • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
  • 10-80 Зв – кома, смерть через 5-30 мин.
  • От 80 Зв – смерть мгновенно.

Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

ну сколько можно? – НаПоправку

Обзор

Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.

Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.

Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:

  • костный мозг, где происходит образование клеток иммунитета и крови,
  • кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
  • ткани плода у беременной женщины.

Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.

Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач. Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?

Не пропустите другие полезные статьи о здоровье от команды НаПоправку

Email*

Подписаться

Учет доз облучения

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.

Какое обследование самое опасное?

Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/1659-07-26, утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.

Часть тела,
орган
Доза мЗв/процедуру
пленочные цифровые
Флюорограммы
Грудная клетка 0,5 0,05
Конечности 0,01 0,01
Шейный отдел позвоночника 0,3 0,03
Грудной отдел позвоночника 0,4 0,04
Поясничный отдел позвоночника 1,0 0,1
Органы малого таза, бедро 2,5 0,3
Ребра и грудина 1,3 0,1
Рентгенограммы
Грудная клетка 0,3 0,03
Конечности 0,01 0,01
Шейный отдел позвоночника 0,2 0,03
Грудной отдел позвоночника 0,5 0,06
Поясничный отдел позвоночника 0,7 0,08
Органы малого таза, бедро 0,9 0,1
Ребра и грудина 0,8 0,1
Пищевод, желудок 0,8 0,1
Кишечник 1,6 0,2
Голова 0,1 0,04
Зубы, челюсть 0,04 0,02
Почки 0,6 0,1
Молочная железа 0,1 0,05
Рентгеноскопии
Грудная клетка 3,3
ЖКТ 20
Пищевод, желудок 3,5
Кишечник 12
Компьютерная томография (КТ)
Грудная клетка 11
Конечности 0,1
Шейный отдел позвоночника 5,0
Грудной отдел позвоночника 5,0
Поясничный отдел позвоночника 5,4
Органы малого таза, бедро 9,5
ЖКТ 14
Голова 2,0
Зубы, челюсть 0,05

Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов — тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.

Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.

Как вывести радиацию после рентгена?

Обычный рентген — это воздействие на тело гамма-излучения, то есть высокоэнергетических электромагнитных колебаний. Как только аппарат выключается, воздействие прекращается, само облучение не накапливается и не собирается в организме, поэтому и выводить ничего не надо. А вот при сцинтиграфии в организм вводят радиоактивные элементы, которые и являются излучателями волн. После процедуры обычно рекомендуется пить больше жидкости, чтобы скорее избавиться от радиации.

Какова допустимая доза облучения при медицинских исследованиях?

Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?

Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.

Опасная доза облучения

Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.

Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.

Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.

Есть ли польза от радиации?

Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.

В среднем человек получает около 2–3 мЗв естественной радиации за год. Для сравнения, при цифровой флюорографии вы получите дозу, эквивалентную естественному облучению за 7–8 дней в году. А, например, полет на самолете дает в среднем 0,002 мЗв в час, да еще работа сканера в зоне контроля 0,001 мЗв за один проход, что эквивалентно дозе за 2 дня обычной жизни под солнцем.

В чём измеряется радиация, нормы для человека: в помещении, природе

Радиоактивное излучение окружает нас повсюду, в какой-то мере его имеют все предметы и даже сам человек. Представляет опасность не сама радиация, а когда её значение превысит некоторые значения. Одно дело, если человек подвергся радиации кратковременно и совсем другое, когда она воздействует длительное время, например, проживает в заражённой квартире. Забегая вперёд скажем, что для человека безопасная норма радиации определена в пределах 30 микрорентген в час (мкР/ч). Существуют ещё несколько единиц измерения. Другие нормы и единицы её измерения обсудим ниже.

Что такое радиоактивность

Содержание статьи

Что такое радиация

Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.

Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.

Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

В чём измеряется радиация

Единиц измерения радиации несколько, но в основном на пользовательском уровне предпочитается рентген, ассоциативно связанный с ней. На таблице ниже они приведены. Рассматривать подробно их не будем, так как при необходимости узнать радиоактивный фон в квартире будут нужны, пожалуй, только 2.

Виды радиации

  1. Зиверт – эквивалентная доза. 1 Зв = 100 Р = 100 БЭР = 1 Гр.
  2. Рентен — внесистемная единица — Кл/кг. 1 Р = 1 БЭР = 0,01 Зв.
  3. БЭР – аналог Зиверт, устаревшая внесистемная единица. 1 БЭР = 1 Р = 0,01 Зв.
  4. Грей – мощность поглощённой дозы – Дж/кг. 1 Гр = 100 Рад.
  5. Рад – доза поглощённой радиации Дж/кг. 1 рад – это 0,01 (1 рад = 0,01 Гр).

На практике больше в ходу системная единица Зиверт (Зв), мЗв – миллизиверт, мкЗв – микрозиверт, названная в честь учёного Рольфа Зиверта. Зиверт единица измерения эквивалентной дозы, выражается в количестве энергии полученной на килограмм массы Дж/кг.

Выражение радиации в Рентгенах также используется хоть и менее широко. Однако конвертировать рентгены в зиверты не составит труда.

1 Рентген равен 0,0098 Зв, но обычно значение в зиверт округляют до 0,01, что упрощает перевод. Так как это очень большие дозы в реальности пользуются гораздо меньшими значениями м – милли 10-3 и мк – микро 10-6 . Отсюда 100 мкР = 1 мкЗв, или 50 мкР = 0,5 мкЗв. То есть используется множитель 100. Когда нужно перевести микрозиверты в микрорентгены нужно какое-то значение умножить на сто, а если нужно перевести рентгены в зиверты, то необходимо поделить.

Уровень радиации которую может получить человека на процедурах и жизни

Надзор и нормативные документы

Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.

В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.

Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
  • Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.

Доза радиации которую получает человек в течении года

Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Доза. Зиверт Воздействие на человека
1–2 Лёгкая форма лучевой болезни.
2–3 Лучевая болезнь. Смертность в течение первого месяца до 35%.
3–6 Смертность до 60%.
6–10 Летальный исход 100% в течение года.
10–80 Кома, смерть через полчаса
80 и более Мгновенная смерть

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.

Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Чем проверить наличие радиации

Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.

Бытовые дозиметры для измерения радиации

Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.

Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.

какая допустимая норма или уровень в микрорентген в России, таблица безопасных и предельных доз

Норма радиации для человека, или допустимая доза излучения – усредненная величина в мкР/ч, полученная путем клинического изучения пациентов, организм которых подвергся воздействию ионизирующего излучения.

В результате проведенных научных исследований было выяснено, что, например, определенная доза радиации может отражать условные нормы или нарушения, степень ионизации, интенсивность и емкость поглощения, эквивалентность, рассчитанную по специальным коэффициентам.

Все ли виды радиации опасны

Уровень нормальной радиации для человека – всего лишь допустимый предел излучения в мкР/ч, на пороге которого начинаются изменения в организме.

Для определения ионизирующего излучения применяется несколько специальных терминов, потому что оно может быть разного происхождения. Этим термином обозначают любые потоки, образованные фотонами, элементарными частицами или осколками атомов, которые могут ионизировать вещество. Необходимо отметить следующее:

  1. Ионизация – процесс образования ионов (положительно или отрицательно заряженных) из молекул или атомов. Результатом этого взаимодействия становится поглощение тепла и выброс электронов.
  2. Они ионизируют вещество, в которое попадают. Проникая в клеточные структуры, разрушают и дестабилизируют их. Опасным итогом этого действия становится сбой иммунитета, прекращение привычных химических взаимообменов, обеспечивающих жизнедеятельность клетки и именуемых естественным метаболизмом.
  3. Вызывая выброс свободных электронов, такой распад образует свободные радикалы. Интенсивность реакции и провокация выброса большей или меньшей интенсивности и определяет то, что принято обозначать как уровень радиации.
  4. Не все виды излучения для человека опасны. Некоторые могут становиться таковыми при определенных условиях, но обычно у них недостаточно энергии, чтобы вызвать ионизацию.
  5. Ультрафиолетовые и инфракрасные лучи, видимый свет и радиодиапазоны не могут в нормальном (основном) состоянии вызвать ионизацию.
  6. Исследования показали, что источником излучения радиации могут стать электромагнитное и рентгеновское, потоки частиц различного вида (например, нейтроны, протоны, альфа-частицы или ионы, как результат ядерного деления).

Когда говорят о радиации, имеется в виду именно ионизирующее излучение. Оно запускает деструкцию белков, становится причиной разрушения клеток живого организма или их перерождения. В природе существуют естественные источники таких потоков, но и человек в немалой степени поучаствовал в возникновении потенциальных резервуаров, откуда могут появляться опасные частицы.

От некоторых из радиоактивных частиц существует простая и доступная защита, (при ее отсутствии и идет речь об облучении). Есть виды, дающие поток активных частиц такой интенсивности, что спастись от них практически невозможно.

Радиация и радиоактивность

Условно можно признать радиацией любые частицы, способные создавать потоки ионов (положительно или отрицательно заряженных). Обычно под этим термином понимают только достаточно большие по силе и энергии, способные действовать на живую клетку.

Они существуют до тех пор, пока не поглощаются каким-либо веществом. Под облучением подразумевают действие радиации или передачу клеткам энергии, которая есть в ионизирующем излучении. Радиоактивность – это потенциал, заложенный в неустойчивых ядрах атомов отдельных веществ.

Распад такой неустойчивой структуры приводит к превращениям, в результате которых происходит выброс потока ионизирующего излучения (радиации).

Еще в середине прошлого столетия шведский исследователь Зиверт установил, что говорить о радиационном уровне, не причиняющем повреждений, нет никакого смысла.

Есть только допустимый уровень и естественный фон, который создается лучами из космоса и условно считается для человека безопасным, нормой.

В понимании ученых, норма облучения – это то, что клетка может выдержать без особых последствий (например, лучевой болезни), но не то, то можно назвать безобидным и абсолютно не оказывающим воздействия.

Радиоактивность – потенциальная способность к испусканию ионизирующего излучения под воздействием свободного потока энергии.

Радиация и есть эти самые потоки, свободно преодолевающие пространство, пока не поглощаются веществом или предметом.

Виды излучения и проникающая способность

Первой искусственно вызванной реакцией была проведенная с альфа-частицами. Их возникновение происходит при распаде ядер или при ионизации гелия-4.

Их проникающая способность не опасна при внешнем (попадающем из космоса) облучении, однако, попадая в дыхательную или пищеварительную систему, эти частицы способны привести к лучевой болезни.

Кроме них, есть множество других потенциальных опасностей:

  • бета-частицы – результат распада определенного типа, скорость распространения огромна, есть положительно и отрицательно заряженные, опасно и внешнее, и внутреннее облучение;
  • гамма – обладают огромной проникающей способностью, что приводит к лучевой болезни или онкологии;
  • нейтронное – может спровоцировать серьезные поражения при некоторых условиях.

Облучение на рентгене, о котором постоянно предупреждают при проведении диагностики – это всего лишь искусственно получаемая энергия фотонов. Различают мягкое и жесткое рентгеновское излучение, но любое из них – мутагенный фактор, способный разрушить живые ткани, если не соблюдать норму.

Поэтому оно и признано ионизирующим, и без необходимых мер защиты может привести к лучевой болезни или новообразованиям.

Естественная и искусственная радиация

Естественной считается любая, проникающая в атмосферу из космоса. Ее уровень зависит от географического положения (на полюсах выше из-за магнитного поля Земли, а на экваторе – ниже).

Выявляется при обследовании месторождений урановых руд, залежей гранита, железных руд и бокситов. Это потенциальные депо скопления радиации. Данная способность – их естественное свойство.

В городе превышение дозы радиации может наблюдаться как от географического положения и природных залежей поблизости, так и от искусственной – результата деятельности человека. Люди используют радиацию для получения энергии, изменения природных условий или ядерных испытаний, транспортировки опасных отходов, аварий на объектах.

В жилых помещениях фон несколько ниже, но многое зависит от степени радиоактивного заражения, близкого соседства объектов атомной энергии и даже направления распространения потока от места аварии или мирного применения. Испытание оружия может легко сделать смертельно опасным уровень радиации в квартире за короткий промежуток времени (минуту, час).

Допустимые и смертельные дозы радиации

40 лет назад была введена единица радиации, названная по фамилии шведского ученого Зиверт. Один зиверт примерно равен 100 бэрам (биологическому эквиваленту рентгена). Рентген – это частицы в сухом воздухе, а бэр – в биологическом субстрате.

Допустимая норма радиации для человека – 50–60 мкР в ч в России, а в Бразилии верхняя граница – 100 микрорентген в час (мкР/ч).

Допустимые нормы различаются в мирное и военное время, для солдат каждой страны ее определяет Министерство обороны. Смертельной дозой считаются разные цифры, все зависит от предельно допустимых нагрузок на отдельного человека.

Называются цифры от 0 до 100 рад. Рад используется для измерения поглощенной дозы излучения на 1 г вещества.

Таблица ниже показывает эквиваленты.

Рад Бэр Зиверт
1 рад = 0,01 Гр 1 бэр = 0,01 Зв 0,01 Зв = 100 эрг/г
1 рад = 100 эрг/г 1 бэр = 100 эрг/г 1 Зв = 100 рентген или 100 бэр

Если переводить в рентгены, то 100 мкР равняется 1 мкЗв. Еще совсем недавно облучение и уровень радиации измеряли в микрорентгенах, а теперь – в микрозивертах (мкЗв).

Нормы радиационного фона

Естественным считается значение от 0,1 до 0,16 мкЗв/ч. Относительной нормой считается не более 0,2 мкЗв/час, но многое зависит от продолжительности излучения.

Показатель в 1 мЗв/час – это много, но на протяжении года – это норма, не подлежащая превышению. Хотя если эту дозу радиации разделить на количество часов в год, то это 0,57 в микрозивертах. Верхний предел допустимого, норма – это не всегда норма, скорее, уже порог к аномалии.

Опасные дозы облучения

При 1 зиверте человек испытывает негативные симптомы. При трех – уже лысеет и получает различные расстройства, вплоть до полового бессилия.

На фоне в 3,5–5 Зв умирает половина больных, причем за короткий срок – 25–30 дней. Более 500 Зв – неминуемая смерть за 2 недели, почти со 100 % вероятностью.

Сколько максимально нужно для летального исхода – значение индивидуальное. СанПиН считает нормой 0,25–0,4 мкЗв/час в жилом помещении.

Норма радиации участка под застройку – не более 0,3 мкЗв/час. Иначе в квартирах, построенных на нем, можно будет за несколько месяцев выбрать годовую норму.

Но радиация влияет не только на жилье, она опасна для человека в квартире, на улице, на открытой местности, может присутствовать в продуктах, питьевой воде и так далее.

Симптомы и степени тяжести облучения

Лучевую болезнь дифференцируют на 4 степени тяжести. На первой, легкой, стационар требуется редко: это только начальная, первичная реакция организма, с однократной рвотой и тошнотой. На средней, после первичной реакции, развивается скрытая форма, с общим ухудшением самочувствия, расстройством сердечной деятельности и температурой.

Третья стадия – развитие острой формы, которое гипотетически может перейти в хроническую, но в большинстве случаев закачивается летальным исходом и только иногда – частичным выздоровлением.

Источник: https://ProNormy.ru/stroitelstvo/uchastok/norma-radiacii

Норма радиации для человека: допустимая доза в мкР/ч, зивертах и микрозивертах в городе и квартире

Слово «радиация» у большинства населения ассоциируется с техногенными катастрофами, такими как авария на Чернобыльской АЭС или атомными бомбардировками городов Хиросима и Нагасаки.

Если коротко передать ощущения, которые возникают у большинства людей, получается, что радиация — это зло.

Хотя на самом деле она существовала на нашей планете задолго до зарождения жизни и продолжит своё существование даже после гибели планеты.

Норма радиации для человека в мкР/ч постоянно отслеживается специальными службами в разных сферах его жизнедеятельности. И это та угроза, с которой сложно бороться, а в случае превышения радиационного фона последствия могут быть самыми плачевными. Чем грозит и какова норма радиации в мкР/ч для человека?

Допустимые дозы радиации:

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем 0,57 мкЗв/час;
  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час;
  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является 1 мЗв/год.

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

Места обязательного мониторинга

Если опустить необходимость замеров на военных объектах, атомных станциях и самолётах, то получается — замеры происходят во многих сферах жизнедеятельности человека.

И это разумно, особенно с учётом появления новых источников радиационного излучения. Замеры проводятся в лесах, горных районах, жилых домах и промышленных объектах. Не будет лишним провести такую операцию и при приобретении какой-нибудь недвижимости.

Начиная застройку и при сдаче объекта в эксплуатацию также проводят такие процедуры.

Про детские сады, больницы, школы и говорить не стоит. Подводя итог, можно говорить о том, что практически во всех сферах жизни проводится контроль нормы радиации и излучения для человека (мкР/ч).

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м2)

Для оценки влияния радиации на вещество (не живые ткани), применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани, применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Сортировка пострадавших

Во введении статьи сделана предпосылка к тому, что не все пациенты, которые получили большую дозу облучения, выживут. Именно этой группе людей оказывают лишь паллиативную помощь (снижение страданий). Но почему? Ниже представлена таблица, в которой указано, как определить степень заболевания по симптомам:

Показатель 1 степень 2 степень 3 степень 4 степень
Рвота (начало и продолжительность) Через 2 часа, однократная Через 1-2 часа, повторная Через 30 минут, многократная Через 5-20 минут, неукротимая
Головная боль Кратковременная Не сильная Сильная Очень сильная
Температура В норме 37,0 — 38,0 37,0 — 38,0 38,0 — 39,0

Степень тяжести определяется по рвоте. Чем раньше возникла рвота после облучения, тем хуже прогноз. Рвота, возникшая уже через 5 минут, является фактом того, что человек проживает свои последние сутки. Такому пациенту оказывают помощь в виде обезболивания, снижения температуры тела, введения препаратов для остановки рвоты и простого сестринского ухода.

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.

Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).

1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*103 Р

Используемая внесистемная единица экспозиционной дозы — Рентген (Р):

  • 1 Р = 2,57976*10-4 Кл/кг

Доза в 1 Рентген — это образование 2,083*109 пар ионов на 1см3 воздуха

Лучевая болезнь

Лучевая болезнь — это состояние, развивающееся при облучении человека в дозах, превышающих порог допустимого и поражающее органы кроветворения, нервной системы, желудочно-кишечного тракта и другие органы, системы.

Выделяют две формы лучевой болезни: острую и хроническую. Хроническая форма развивается при постоянном или частом облучении малой дозы, но все же превышающей допустимый порог.

Острая лучевая болезнь развивается при однократном облучении большой дозой. Степень тяжести определяется по индивидуальному дозиметру (какую дозу человек получил) и по симптоматике.

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения.

Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными.

То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза — это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется — Зиверт (Зв).

Используемая внесистемная единица эквивалентной дозы — Бэр (бэр): 1 Зв = 100 бэр.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.  Эквивалентная доза радиации — это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).

Как измеряют

Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма. Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.

Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.

Допустимые нормы радиации

В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это — эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час.

То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час.

Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах — мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год.

Источник: https://hospitalvv.ru/vidy-otravlenij/radiacionnyj-fon.html

Радиация и радиационный фон, какую дозу человек получает за год

Услышав слово «радиация», вы, наверное, сразу себе представили атомную станцию и людей в специальных костюмах с дозиметрами, а в ушах появился легкий треск. А что вы знаете про радиационный фон, какова его норма и из чего он складывается в современном мире? Интересно? Тогда сейчас я расскажу все подробно.

Что такое радиация

Итак, для начала давайте узнаем, что же такое радиация. Радиация — это ионизирующее излучение (поток фотонов, элементарных частиц или же атомов ядер), которое способно ионизировать вещество. Звучит не совсем понятно, верно? Если сказать по-простому, то радиация — это излучение, которое оказывает то или иное (чаще отрицательное) воздействие на живой организм.

Откуда она берется

Итак, основными источниками радиации являются:

  1. Естественные (природные) радиоактивные вещества, которые окружают и находятся внутри нас (73% от общего фона).
  2. Разнообразные медицинские процедуры (флюорография и т. п. Порядка 13% от общего фона).
  3. Излучение из космического пространства (14% от общего фона).

Кроме этого существует еще один источник радиоактивного излучения, но он к естественному фону не имеет никакого значения. Я имею виду техногенные катастрофы (например, печально известная авария на Чернобыльской АЭС).

Кроме этого за последние 50 лет было произведено просто огромное количество ядерных испытаний, которые так же внесли свою лепту в увеличение общего радиационного фона нашей планеты.

В результате взрывов общее содержание в атмосфере такого элемента как углерод-14 выросло на 2,6%. И на сегодняшний день такие испытания увеличили радиационную нагрузку на человека на 1 мбэр/год, что равно примерно 1% от общей дозы ежегодного облучения.

Помимо этого, энергетика также вносит свои коррективы. Ведь мы добываем огромное количество нефти, угля, газа, среди которых на поверхность поднимаются такие элементы как калий-40, уран-238 и торий-232.

И если измерить радиационный фон возле ТЭЦ, то можно увидеть, что приблизительная годовая доза будет составлять от 0,5 до 5 мбэр/год.

В каких единицах измеряется радиация

Для того, чтобы измерить энергию излучения используют разные величины. Так, например, среди медиков радиацию измеряют в зиверт, которая характеризует эквивалентную дозу облучения, полученную организмом за процедуру. Именно в этой величине принято измерять уровень радиационного фона.

А вот, такая единица измерения как Беккерель используется для определения радиоактивности воды, почвы и т. д. за единицу объема.

Максимально допустимые дозы облучения

У каждого, кто хоть раз изучал данную тематику, сразу же вставал вопрос, а какой уровень радиации безопасен?

Так вот, естественным, а значит и безопасным фоном считается фон порядка 0,1 – 0,2 мкЗв/ч.

Принято считать постоянный фон выше 1,2 мкЗв/ч опасным для человека (тут следует понимать четкое различие между постоянным воздействием и краткосрочным).

«А много ли это?» — спросите вы.

Так вот, например радиационный фон возле «Фукусима -1» сразу после аварии, превышал допустимую норму в 1600 раз и был зафиксирован уровень в 161 мкЗв/час.

А на Чернобыльской АЭС уровень радиации достигал величины в несколько тысяч микрозиверов в час.

Летчики да и пассажиры авиалайнеров, пролетая даже над так называемыми чистыми территориями за три часа полета получают дозу облучения в 30 мкЗв.

Если у вас до сих пор старый лучевой монитор, ну или телевизор, то за два часа просмотра вы получаете такую же дозу как если бы вы сходили в кабинет флюорографии.

А вот любители покурить вместе с никотином и другими маслами получают облучение в 2,7 мкЗв за год (при условии курения одной сигареты в сутки).

На сегодня это все, что я хотел вам рассказать про радиацию и радиационный фон. В следующих статьях я расскажу вам о том, каким образом влияют на организм различные дозы радиации, а так же каким образом можно обезопасить себя от лишней радиации. Так что подписывайтесь и делайте репосты с лайками (если конечно материал вам понравился).

Источник: https://zen.yandex.ru/media/id/5aef12c13dceb76be76f1bb1/5d7a80605d63623ee7a179c8

Единицы измерения и дозы радиации

Навигация по статье:


Содержание статьи

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.


Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час


  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час



  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

    1 мЗв/год


Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.




В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м2)

Для оценки влияния радиации на вещество (не живые ткани), применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани, применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)



Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой.

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*103 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10-4 Кл/кг

Доза в 1 Рентген - это образование 2,083*109 пар ионов на 1см3 воздуха



Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв).

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр): 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":


Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



Допустимые нормы радиации

В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это - эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год.

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения, величиной 5 мЗв/год. Используемая формулировка в документах - "приемлемый уровень", очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый.

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников. Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час. Это подробно рассмотрено в статье "Источники радиоактивных излучений". Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год, а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются.


Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час.
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников, является 1 мЗв/год.


Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час, действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь, по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.



Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.




Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.




Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.



Другие единицы измерения радиации

  • Активность радиоактивного источника - ожидаемое число элементарных радиоактивных распадов в единицу времени. Измеряется:
  • Беккерель (Бк) - единица в системе СИ.
    1 Бк = 1 распад/с
  • Кюри (Ки) - внесистемная единица.
    1 Ки = 3,7*1010Бк


Перевод величин радиоактивного распада

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.




Видео: Единицы измерения и дозы радиации




Термины и определения

Радиация или ионизирующее излучение - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад - это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада - статистическая вероятность распада атома за единицу времени.

Период полураспада - промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза - эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы - это изменение дозы за единицу времени.


Население мира в 2020 г. по странам

Текущая оценка мирового населения Бюро переписей США на июнь 2019 года показывает, что текущее население Земли составляет 7 577 130 400 человек, что намного превышает численность населения мира в 7,2 миллиарда человек по сравнению с 2015 годом. Наша собственная оценка основана на данных ООН показывает, что население мира превышает 7,7 миллиарда человек.

Китай - самая густонаселенная страна в мире с населением более 1,4 миллиарда человек. Это одна из двух стран с населением более 1 миллиарда человек, на втором месте Индия.По состоянию на 2018 год в Индии проживает более 1,355 миллиарда человек, и ожидается, что ее рост будет продолжаться как минимум до 2050 года. Ожидается, что к 2030 году Индия станет самой густонаселенной страной в мире. Это связано с тем, что население Индии будет расти, в то время как в Китае прогнозируется сокращение населения.

В следующих 11 странах с наибольшим населением в мире проживает более 100 миллионов человек. К ним относятся США, Индонезия, Бразилия, Пакистан, Нигерия, Бангладеш, Россия, Мексика, Япония, Эфиопия и Филиппины.Ожидается, что все из этих стран будут продолжать расти, за исключением России и Японии, население которых сократится к 2030 году, а затем снова значительно сократится к 2050 году.

Население многих других стран составляет не менее одного миллиона человек, а есть страны с населением всего несколько тысяч человек. Самое маленькое население в мире - это Ватикан, где проживает всего 801 человек.

В 2018 году темпы прироста населения мира составили 1,12%. Каждые пять лет, начиная с 1970-х годов, темпы роста населения продолжали падать.Ожидается, что население мира будет и дальше расти, но гораздо более медленными темпами. К 2030 году население превысит 8 миллиардов человек. В 2040 году это число вырастет до более чем 9 миллиардов. В 2055 году их число превысит 10 миллиардов, и еще миллиард человек прибавится не раньше конца века. Согласно текущим оценкам ООН, ежегодный прирост населения исчисляется миллионами - по оценкам, каждый год добавляется более 80 миллионов новых жизней.

На этот прирост населения значительно повлияют девять конкретных стран, которые могут вносить свой вклад в рост населения быстрее, чем другие страны.К этим странам относятся Демократическая Республика Конго, Эфиопия, Индия, Индонезия, Нигерия, Пакистан, Уганда, Объединенная Республика Танзания и Соединенные Штаты Америки. Особый интерес вызывает то, что Индия к 2030 году приблизится к тому, чтобы обогнать Китай как самую густонаселенную страну. Кроме того, ожидается, что несколько стран Африки удвоят свое население, прежде чем показатели рождаемости начнут полностью замедляться.

Ожидаемая продолжительность жизни в мире за последние годы также увеличилась, в результате чего ожидаемая продолжительность жизни населения при рождении в целом увеличилась до чуть более 70 лет.Прогнозируемая ожидаемая продолжительность жизни в мире, как ожидается, будет только продолжать улучшаться и достигнет почти 77 лет к 2050 году. Существенные факторы, влияющие на данные о продолжительности жизни, включают прогнозы способности снизить воздействие СПИД / ВИЧ, а также сокращение показатели инфекционных и неинфекционных заболеваний.

Старение населения оказывает огромное влияние на способность населения поддерживать так называемый коэффициент поддержки. Один из ключевых выводов 2017 года заключается в том, что в большинстве стран мира ожидается значительный рост в возрастной группе 60+.Это создаст огромную нагрузку на более молодые возрастные группы, поскольку количество пожилых людей становится настолько большим без количества рождений, чтобы поддерживать нормальный коэффициент поддержки.

Хотя приведенное выше число кажется очень точным, важно помнить, что это всего лишь оценка. Просто невозможно быть уверенным в том, сколько людей одновременно проживает на Земле, и существуют противоречивые оценки численности населения мира в 2016 году.

Некоторые, включая ООН, считают, что в октябре 2011 года было достигнуто 7 миллиардов населения.Другие, включая Бюро переписи населения США и Всемирный банк, считают, что общая численность населения мира достигла 7 миллиардов человек в 2012 году, примерно в марте или апреле.

.

Мировая демография 2020 (Население, возраст, пол, тенденции)

Население мира (2020)

Посмотреть живое население, диаграммы и тенденции: Население мира

Мировое население

7,794,798,739

Фертильность в мире

Общий коэффициент фертильности (СКР) 2,1 представляет собой уровень воспроизводства : среднее количество детей на женщину, необходимое для каждого поколения, чтобы точно заменить себя без международной иммиграции.Значение ниже 2,1 приведет к сокращению численности коренного населения

беременная женщина Общий коэффициент фертилии (СКР)

2,5

(живорождений на женщину, 2020)

Ожидаемая продолжительность жизни в мире

См. Также: Рейтинг стран в мире по ожидаемой продолжительности жизни

Оба пола

73,2 года

(ожидаемая продолжительность жизни при рождении, оба пола вместе)

Женщины

75,6 года

(ожидаемая продолжительность жизни при рождении, женщины)

Мужчины

70.8 лет

(ожидаемая продолжительность жизни при рождении, мужчины)

Уровень младенческой смертности и смертности детей в возрасте до 5 лет в мире

Младенческая смертность

26,1

(младенческая смертность на 1000 живорождений)

Смертность младше 5 лет

35,8

(на 1000 живорождений)

Городское население мира

В настоящее время 55,7% населения мира составляет городских (4299 438 618 человек в 2019 году)

Плотность населения

Плотность населения в мире в 2019 году составляет 52 человека за км 2 (134 человека на милю 2 ), в расчете на земельных участков площадью 148,940,000 км2 (57,506,032 кв.миль).

См. Также

Источники

Определения

Пирамида численности населения

Пирамида численности населения (также называемая «пирамидой возраста и пола») представляет собой графическое представление возраста и пола населения.

Типы:

  • Расширяющаяся - пирамида с широким основанием (больший процент людей в младших возрастных группах, что указывает на высокий уровень рождаемости и высокий уровень фертильности) и узкой вершиной (высокий уровень смертности и меньшая продолжительность жизни ).Это говорит о росте населения. Пример: Пирамида населения Нигеры
  • Констрикти
.

Ожидается, что население мира будет расти более медленными темпами, к 2050 году оно достигнет 9,7 миллиардов, а к 2100 году достигнет почти 11 миллиардов | UN DESA

Согласно новому докладу Организации Объединенных Наций, опубликованному сегодня, ожидается, что в ближайшие 30 лет население мира увеличится на 2 миллиарда человек, с 7,7 миллиарда в настоящее время до 9,7 миллиарда в 2050 году.

The World Population Prospects 2019: Highlights, публикуемая Отделом народонаселения Департамента ООН по экономическим и социальным вопросам, содержит всесторонний обзор глобальных демографических моделей и перспектив.В исследовании сделан вывод о том, что население мира может достичь своего пика примерно в конце текущего столетия, составив почти 11 миллиардов человек.

В докладе также подтверждается, что население мира стареет из-за увеличения продолжительности жизни и снижения уровня рождаемости, и что число стран, в которых наблюдается сокращение численности населения, растет. Возникающие в результате изменения в размере, составе и распределении населения мира имеют важные последствия для достижения целей в области устойчивого развития (ЦУР), согласованных на глобальном уровне задач по повышению экономического процветания и социального благополучия при одновременной защите окружающей среды.

Население мира продолжает расти, но темпы роста сильно различаются по регионам

Новые прогнозы в области народонаселения показывают, что на девять стран будет приходиться более половины прогнозируемого роста мирового населения в период до 2050 года: Индия, Нигерия, Пакистан, Демократическая Республика Конго, Эфиопия, Объединенная Республика Танзания, Индонезия, Египет и Соединенные Штаты Америки (в порядке убывания ожидаемого увеличения).По прогнозам, к 2027 году Индия обгонит Китай как самую густонаселенную страну мира.

Согласно прогнозам, к 2050 году население стран Африки к югу от Сахары удвоится (увеличение на 99%). Регионы, в которых могут наблюдаться более низкие темпы прироста населения в период с 2019 по 2050 год, включают Океанию, за исключением Австралии / Новой Зеландии (56%), Северную Африку и Западную Азию (46%), Австралию / Новую Зеландию (28%), Центральную и Южную Азию (25%). %), Латинская Америка и Карибский бассейн (18%), Восточная и Юго-Восточная Азия (3%), а также Европа и Северная Америка (2%).

Глобальный коэффициент фертильности, который упал с 3,2 рождений на женщину в 1990 году до 2,5 в 2019 году, по прогнозам, еще больше снизится до 2,2 в 2050 году. В 2019 году фертильность по-прежнему будет превышать 2,1 рождения на женщину в среднем за всю жизнь в суб- Африка Сахара (4,6), Океания, за исключением Австралии / Новой Зеландии (3,4), Северная Африка и Западная Азия (2,9), а также Центральная и Южная Азия (2,4). (Уровень фертильности 2,1 рождения на женщину необходим для обеспечения смены поколений и предотвращения сокращения численности населения в долгосрочной перспективе при отсутствии иммиграции.)

Г-н Лю Чжэньминь, заместитель Генерального секретаря Организации Объединенных Наций по экономическим и социальным вопросам, сказал, что в отчете предлагается дорожная карта, указывающая на то, где нацелить действия и вмешательства. «Многие из наиболее быстро растущих групп населения находятся в беднейших странах, где рост населения создает дополнительные проблемы в усилиях по искоренению бедности, достижению большего равенства, борьбе с голодом и недоеданием и повышению охвата и качества систем здравоохранения и образования, чтобы никто не остался позади.”

Рост трудоспособного населения создает возможности для экономического роста

В большинстве стран Африки к югу от Сахары, а также в некоторых частях Азии, Латинской Америки и Карибского бассейна недавнее снижение фертильности привело к тому, что население трудоспособного возраста (25-64 года) росло быстрее, чем в других возрастных группах, создавая возможность для ускоренный экономический рост благодаря благоприятному возрастному распределению населения. Чтобы извлечь выгоду из этого «демографического дивиденда», правительства должны инвестировать в образование и здравоохранение, особенно в молодежь, и создавать условия, способствующие устойчивому экономическому росту.

Люди в беднейших странах по-прежнему живут на 7 лет меньше, чем в среднем в мире

Ожидаемая продолжительность жизни при рождении в мире, которая увеличилась с 64,2 года в 1990 году до 72,6 года в 2019 году, как ожидается, вырастет до 77,1 года в 2050 году. Несмотря на значительный прогресс, достигнутый в сокращении разницы в продолжительности жизни между странами, сохраняются большие пробелы. . В 2019 году ожидаемая продолжительность жизни при рождении в наименее развитых странах отстает от среднемирового показателя на 7,4 года в основном из-за неизменно высокого уровня детской и материнской смертности, а также насилия, конфликтов и продолжающегося воздействия эпидемии ВИЧ.

Население мира стареет, причем быстрее всех растет возрастная группа 65 лет и старше

К 2050 году каждый шестой человек в мире будет старше 65 лет (16%), по сравнению с каждым 11 в 2019 году (9%). Регионы, в которых доля населения в возрасте 65 лет и старше, согласно прогнозам, удвоится в период с 2019 по 2050 год, включают Северную Африку и Западную Азию, Центральную и Южную Азию, Восточную и Юго-Восточную Азию, а также Латинскую Америку и Карибский бассейн. К 2050 году каждый четвертый житель Европы и Северной Америки может быть в возрасте 65 лет и старше.В 2018 году впервые в истории люди в возрасте 65 лет и старше превосходили детей в возрасте до пяти лет во всем мире. Прогнозируется, что число людей в возрасте 80 лет и старше утроится - со 143 миллионов в 2019 году до 426 миллионов в 2050 году.

Падение доли населения трудоспособного возраста оказывает давление на системы социальной защиты

Коэффициент потенциальной поддержки, который сравнивает число людей трудоспособного возраста и лиц старше 65 лет, снижается во всем мире.В Японии этот показатель составляет 1,8, что является самым низким показателем в мире. Еще 29 стран, в основном в Европе и Карибском бассейне, уже имеют коэффициент потенциальной поддержки ниже трех. Ожидается, что к 2050 году 48 стран, в основном в Европе, Северной Америке, Восточной и Юго-Восточной Азии, будут иметь потенциальные коэффициенты поддержки ниже двух. Эти низкие значения подчеркивают потенциальное влияние старения населения на рынок труда и экономические показатели, а также фискальное давление, с которым многие страны столкнутся в ближайшие десятилетия, поскольку они стремятся создать и поддерживать государственные системы здравоохранения, пенсионного обеспечения и социальной защиты. для пожилых людей.

В растущем числе стран наблюдается сокращение численности населения

С 2010 г. в 27 странах или регионах численность населения сократилась на один процент или более. Это падение вызвано устойчиво низким уровнем рождаемости. Влияние низкой рождаемости на численность населения в некоторых местах усиливается высоким уровнем эмиграции. Согласно прогнозам, в период с 2019 по 2050 год численность населения сократится на один процент или более в 55 странах или регионах, в 26 из которых может наблюдаться сокращение как минимум на десять процентов.В Китае, например, прогнозируется сокращение населения на 31,4 миллиона человек, или примерно на 2,2 процента, в период с 2019 по 2050 год.

Миграция стала основным компонентом изменения численности населения в некоторых странах

В период с 2010 по 2020 год в четырнадцати странах или регионах чистый приток мигрантов составит более одного миллиона человек, а в десяти странах чистый отток будет аналогичной величины. Некоторые из самых крупных миграционных потоков обусловлены спросом на рабочих-мигрантов (Бангладеш, Непал и Филиппины) или насилием, отсутствием безопасности и вооруженным конфликтом (Мьянма, Сирия и Венесуэла).Беларусь, Эстония, Германия, Венгрия, Италия, Япония, Российская Федерация, Сербия и Украина испытают чистый приток мигрантов в течение десятилетия, что поможет компенсировать потери населения, вызванные превышением смертности над рождением.

«Эти данные составляют важную часть доказательной базы, необходимой для мониторинга глобального прогресса в достижении Целей устойчивого развития к 2030 году», - говорит Джон Уилмот, директор Отдела народонаселения Департамента по экономическим и социальным вопросам Организации Объединенных Наций.«Более одной трети показателей, утвержденных для использования в рамках глобального мониторинга ЦУР, основаны на данных World Population Prospects», - добавил он.

Об отчете

The World Population Prospects 2019: Highlights представляет основные результаты 26-го раунда глобальных демографических оценок и прогнозов ООН. Отчет включает обновленные оценки численности населения с 1950 года по настоящее время для 235 стран или территорий, основанные на подробном анализе всей доступной информации о соответствующих исторических демографических тенденциях.Последняя оценка использует результаты 1690 национальных переписей населения, проведенных в период с 1950 по 2018 год, а также информацию из систем записи актов гражданского состояния и 2700 общенациональных репрезентативных выборочных обследований. В редакции 2019 года также представлены демографические прогнозы с настоящего момента до 2100 года, отражающие ряд возможных или вероятных результатов на глобальном, региональном и страновом уровнях.

.

Старение | Организация Объединенных Наций

Население мира стареет: практически в каждой стране мира наблюдается рост числа и доли пожилых людей в их населении.

Старение населения готово стать одной из самых значительных социальных трансформаций двадцать первого века, которая будет иметь последствия почти для всех секторов общества, включая рынок труда и финансовые рынки, спрос на товары и услуги, такие как жилье, транспорт и социальная защита, а также семейные структуры и связи поколений.

Пожилые люди все чаще рассматриваются как участники развития, чья способность действовать для улучшения себя и своего общества должна быть включена в политику и программы на всех уровнях. В ближайшие десятилетия многие страны, вероятно, столкнутся с финансовым и политическим давлением в отношении государственных систем здравоохранения, пенсий и социальной защиты для растущего пожилого населения.

Тенденции старения населения

Во всем мире население в возрасте 65 лет и старше растет быстрее, чем все другие возрастные группы.

Согласно данным World Population Prospects: Revision 2019, к 2050 году каждый шестой человек в мире будет старше 65 лет (16%), по сравнению с одним из 11 в 2019 году (9%). К 2050 году каждый четвертый житель Европы и Северной Америки может быть в возрасте 65 лет и старше. В 2018 году впервые в истории люди в возрасте 65 лет и старше превосходили детей в возрасте до пяти лет во всем мире. По прогнозам, число людей в возрасте 80 лет и старше утроится - со 143 миллионов в 2019 году до 426 миллионов в 2050 году.

Демографические факторы старения населения

Размер и возрастной состав населения определяются совместно тремя демографическими процессами: рождаемостью, смертностью и миграцией.

С 1950 года ожидаемая продолжительность жизни во всех регионах значительно увеличилась. По мере увеличения ожидаемой продолжительности жизни при рождении, увеличение выживаемости в пожилом возрасте составляет растущую долю от общего улучшения продолжительности жизни.

Хотя снижение рождаемости и увеличение продолжительности жизни являются ключевыми факторами старения населения во всем мире, международная миграция также внесла свой вклад в изменение возрастной структуры населения в некоторых странах и регионах.В странах, которые испытывают большие иммиграционные потоки, международная миграция может замедлить процесс старения, по крайней мере временно, поскольку мигранты, как правило, находятся в молодом трудоспособном возрасте. Однако мигранты, которые остаются в стране, со временем станут пожилыми людьми.

Ключевые конференции по проблемам старения

Чтобы приступить к рассмотрению этих вопросов, Генеральная Ассамблея созвала первую Всемирную ассамблею по проблемам старения в 1982 году, на которой был разработан Венский международный план действий по проблемам старения из 62 пунктов.Он призвал к конкретным действиям по таким вопросам, как здоровье и питание, защита пожилых потребителей, жилье и окружающая среда, семья, социальное обеспечение, обеспечение доходов и занятости, образование, а также сбор и анализ данных исследований.

В 1991 году Генеральная Ассамблея приняла Принципы Организации Объединенных Наций в отношении пожилых людей, в которых перечислено 18 прав пожилых людей, касающихся независимости, участия, ухода, самореализации и достоинства. В следующем году Международная конференция по проблемам старения собралась для реализации Плана действий, приняв Прокламацию по проблемам старения.По рекомендации конференции Генеральная Ассамблея ООН объявила 1999 год Международным годом пожилых людей. Международный день пожилых людей отмечается ежегодно 1 октября.

Действия в защиту старения продолжились в 2002 году, когда в Мадриде прошла Вторая Всемирная ассамблея по проблемам старения. Стремясь разработать международную политику по проблемам старения для XXI века, она приняла Политическую декларацию и Мадридский международный план действий по проблемам старения. План действий призывает к изменению взглядов, политики и практики на всех уровнях, чтобы реализовать огромный потенциал старения в двадцать первом веке.В его конкретных рекомендациях в отношении действий приоритет отдается пожилым людям и развитию, укреплению здоровья и благополучия в пожилом возрасте, а также обеспечению благоприятных и благоприятных условий.

Ресурсы

.

Ожидается, что рост мирового населения почти прекратится к 2100 году

Ожидается, что впервые в современной истории население мира практически прекратит рост к концу этого столетия, в значительной степени из-за падения глобального уровня рождаемости, согласно анализу новых данных Организации Объединенных Наций, проведенному Pew Research Center. .

По прогнозам, к 2100 году население мира достигнет примерно 10,9 миллиарда человек с ежегодным приростом менее 0,1% - резкое сокращение по сравнению с нынешними темпами.С 1950 года по сегодняшний день население мира росло от 1% до 2% ежегодно, а число людей увеличилось с 2,5 до более чем 7,7 млрд.

Вот 11 ключевых выводов из доклада ООН «Перспективы народонаселения мира 2019»:

1 Ожидается, что к 2100 году глобальный коэффициент фертильности составит 1,9 рождений на женщину по сравнению с 2,5 на сегодняшний день. Прогнозируется, что к 2070 году этот коэффициент упадет ниже коэффициента воспроизводящей фертильности (2,1 рождения на женщину). Коэффициент замещающей фертильности - это количество рождений на одну женщину, необходимое для сохранения численности населения.

2 Ожидается, что средний возраст в мире увеличится до 42 лет в 2100 году по сравнению с нынешним 31 годом и с 24 в 1950 году. Ожидается, что в период с 2020 по 2100 год число людей в возрасте 80 лет и старше увеличится со 146 миллионов до 881 миллион. Прогнозируется, что начиная с 2073 года будет больше людей в возрасте 65 лет и старше, чем в возрасте до 15 лет - это будет впервые. Факторами, способствующими увеличению среднего возраста, являются увеличение продолжительности жизни и снижение коэффициента фертильности.

3Африка - единственный регион мира, в котором прогнозируется значительный рост населения до конца этого столетия. Ожидается, что в период с 2020 по 2100 год население Африки увеличится с 1,3 миллиарда до 4,3 миллиарда. Прогнозы показывают, что этот прирост будет происходить в основном в странах Африки к югу от Сахары, население которых, как ожидается, увеличится более чем втрое к 2100 году. В регионах, включающих США и Канаду (Северная Америка), а также Австралию и Новую Зеландию (Океания), прогнозируется рост. на протяжении всей остальной части века, но более медленными темпами, чем в Африке.(В этом анализе используются региональные классификации ООН и могут отличаться от других отчетов исследовательского центра Pew.)

4 Ожидается, что к 2100 году население Европы и Латинской Америки сократится. Ожидается, что в 2021 году население Европы достигнет пика в 748 миллионов человек. Ожидается, что к 2037 году регион Латинской Америки и Карибского бассейна превзойдет Европу по численности населения, а затем достигнет 768 человек. млн в 2058 г.

5 Ожидается, что население Азии увеличится с 4.С 6 миллиардов в 2020 году до 5,3 миллиарда в 2055 году, затем начнется снижение. Ожидается, что пик численности населения Китая будет достигнут в 2031 году, а численность населения Японии и Южной Кореи, согласно прогнозам, сократится после 2020 года. Ожидается, что население Индии будет расти до 2059 года, когда оно достигнет 1,7 миллиарда человек. Между тем, согласно прогнозам, Индонезия - самая густонаселенная страна Юго-Восточной Азии - достигнет своего пика в 2067 году.

6 Ожидается, что в регионе Северной Америки миграция из остального мира будет основным фактором непрерывного роста населения. Ожидается, что в течение следующих 80 лет (с 2020 по 2100 год) численность иммигрантов в Соединенных Штатах увеличится на 85 миллионов человек, согласно прогнозам ООН, что примерно равно общему количеству следующих девяти стран, вместе взятых. В Канаде миграция, вероятно, станет ключевым фактором роста, поскольку ожидается, что число смертей в Канаде превысит число рождений.

7 Прогнозируется, что на шесть стран будет приходиться более половины прироста мирового населения до конца этого века, а пять из них находятся в Африке. Ожидается, что в период с 2020 по 2100 год мировое население вырастет примерно на 3,1 миллиарда человек. Прогнозируется, что более половины этого прироста придется на Нигерию, Демократическую Республику Конго, Танзанию, Эфиопию и Анголу, а также на одну неафриканскую страна (Пакистан). По прогнозам, к 2100 году пять африканских стран войдут в десятку стран мира с наибольшим населением.

8По прогнозам, к 2027 году Индия превзойдет Китай как самую густонаселенную страну мира. Между тем, Нигерия превзойдет США.С. как третья по величине страна в мире к 2047 году, согласно прогнозам.

9 Ожидается, что в период с 2020 по 2100 год 90 стран потеряют население. Ожидается, что к 2100 году две трети всех стран и территорий Европы (32 из 48) потеряют население. В Латинской Америке и Карибском бассейне ожидается сокращение численности населения половины из 50 стран региона. Напротив, в период с 1950 по 2020 год только шесть стран мира потеряли население из-за гораздо более высоких показателей рождаемости и относительно молодого населения в последние десятилетия.

10 Ожидается, что к 2060 году Африка обгонит Азию по рождаемости. Ожидается, что к 2100 году в Африке родится половина младенцев, рожденных в мире, по сравнению с тремя из десяти сегодня. Ожидается, что в период с 2020 по 2100 год в Нигерии родится 864 миллиона человек - больше, чем в любой другой африканской стране. Согласно прогнозам, к 2070 году число рождений в Нигерии превысит число рождений в Китае.

Между тем, согласно прогнозам, примерно треть младенцев в мире будут рождаться в Азии к концу этого столетия по сравнению с примерно половиной сегодня и пиком в 65% в период 1965-70 годов.

11 Ожидается, что к 2100 году в регионе Латинской Америки и Карибского бассейна будет проживать самое старое население из всех регионов мира, что является противоположностью 20-го века. В 1950 году средний возраст в регионе составлял всего 20 лет. По прогнозам, к 2100 году эта цифра увеличится более чем вдвое - до 49 лет.

Эта закономерность очевидна при рассмотрении отдельных стран региона. Например, в 2020 году ожидается, что средний возраст в Бразилии (33), Аргентине (32) и Мексике (29) будет ниже, чем средний возраст в США.С. (38). Однако к 2100 году все три из этих латиноамериканских стран, по прогнозам, будут старше, чем США. Средний возраст будет 51 в Бразилии, 49 в Мексике и 47 в Аргентине, по сравнению со средним возрастом 45 лет в США, как ожидается, Колумбия. претерпевает особенно резкий переход: с 1965 по 2100 год его средний возраст увеличился более чем в три раза - с 16 до 52 лет.

Согласно прогнозам, в 2020 году в Японии будет самый высокий средний возраст среди всех стран мира - 48 лет. Ожидается, что средний возраст в Японии будет продолжать расти, пока в 2065 году не достигнет 55 лет.Ожидается, что в 2100 году он будет ниже (54). К тому времени страной с самым высоким средним возрастом, как ожидается, станет Албания со средним возрастом 61 год.

Исправление: этот пост был обновлен, чтобы уточнить, что Индия, как ожидается, станет самой густонаселенной страной мира к 2027 году. К 2059 году ее население, по прогнозам, достигнет пика в 1,7 миллиарда человек.

Примечание. Прогнозы ООН в отношении численности населения в будущем основаны на предположениях о вероятных будущих изменениях ключевых демографических показателей, включая рождаемость, ожидаемую продолжительность жизни и миграцию.Есть неопределенность в отношении конкретных оценок. В этом анализе используется средний вариант для будущих дат, который берет среднюю точку вероятных результатов. Для получения дополнительной информации см. Полный отчет ООН , таблицы данных и методологию .

Энтони Киллаффо - бывший аналитик-исследователь, который занимался социальными и демографическими тенденциями в Pew Research Center. Нил Г.Руис - заместитель директора по глобальной миграции и демографии в Pew Research Center. .

World Population Prospects - Population Division

2019 Revision of World Population Prospects - это двадцать шестой раунд официальных демографических оценок и прогнозов Организации Объединенных Наций, которые были подготовлены Отделом народонаселения Департамента по экономическим и социальным вопросам Секретариата Организации Объединенных Наций.

Основные результаты представлены в серии файлов Excel с отображением ключевых демографических показателей для каждой группы развития ООН, Всемирного банка группы доходов, географического региона, Целей устойчивого развития (ЦУР) региона, субрегиона и страны или области для выбранных периодов или датируется 1950-2100 гг.Для опытных пользователей, которым необходимо использовать эти данные в форме базы данных или статистической программе, мы рекомендуем использовать формат CSV для массовой загрузки. Специальные агрегаты также предоставляют дополнительные группы стран.

Быстрая навигация



Заявление об ограничении ответственности: Этот веб-сайт содержит таблицы данных, рисунки, карты, аналитические материалы и технические примечания из текущей редакции журнала World Population Prospects. Эти документы не подразумевают выражения какого-либо мнения со стороны Секретариата Организации Объединенных Наций относительно правового статуса какой-либо страны, территории, города или района или его властей или относительно делимитации их границ или границ.

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.