ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Фазовый дальномер лазерный


Самодельный фазовый лазерный дальномер / Хабр


В статье я расскажу о том, как я делал лазерный дальномер и о принципе его работы. Сразу отмечу, что конструкция представляет собой макет, и ее нельзя использовать для практического применения. Делалась она только для того, чтобы убедится в том, что фазовый дальномер реально собрать самому.
Теория

Часто приходится встречать мнение, что с помощью лазера расстояние измеряют только путем прямого измерения времени «полета» лазерного импульса от лазера до отражающего объекта и обратно. На самом деле, этот метод (его называют импульсным или времяпролетным, TOF) применяют в основном в тех случаях, когда расстояния до нужного объекта достаточно велики (>100м). Так как скорость света очень велика, то за один импульс лазера достаточно сложно с большой точностью измерить время пролета света, и следовательно, расстояние. Свет проходит 1 метр примерно за 3.3 нс, так что точность измерения времени должна быть наносекундная, хотя точность измерения расстояния при этом все равно будет составлять десятки сантиметров. Для измерения временных интервалов с такой точностью используют ПЛИС и специализированные микросхемы.


Однако существуют и другие лазерные методы изменения расстояния, одним из них является фазовый. В этом методе, в отличие от предыдущего, лазер работает постоянно, но его излучение амплитудно модулируется сигналом определенной частоты (обычно это частоты меньше 500МГц). Отмечу, что длина волны лазера при этом остается неизменной (она находится в пределах 500 — 1100 нм).
Отраженное от объекта излучение принимается фотоприемником, и его фаза сравнивается с фазой опорного сигнала — от лазера. Наличие задержки при распространении волны создает сдвиг фаз, который и измеряется дальномером.
Расстояние определяется по формуле:

Где с — скорость света, f — частота модуляции лазера, фи — фазовый сдвиг.
Эта формула справедлива только в том случае, если расстояние до объекта меньше половины длины волны модулирующего сигнала, которая равна с / 2f.
Если частота модуляции равна 10МГц, то измеряемое расстояние может доходить до 15 метров, и при изменении расстояния от 0 до 15 метров разность фаз будет меняться от 0 до 360 градусов. Изменение сдвига фаз на 1 градус в таком случае соответствует перемещению объекта примерно на 4 см.
При превышении этого расстояния возникает неоднозначность — невозможно определить, сколько периодов волны укладывается в измеряемом расстоянии. Для разрешения неоднозначности частоту модуляции лазера переключают, после чего решают получившуюся систему уравнений.
Самый простой случай — использование двух частот, на низкой приблизительно определяют расстояние до объекта (но максимальное расстояние все равно ограничено), на высокой определяют расстояние с нужной точностью — при одинаковой точности измерения фазового сдвига, при использовании высокой частоты точность измерения расстояния будет заметно выше.

Так как существуют относительно простые способы измерять фазовый сдвиг с высокой точностью, то точность измерения расстояния в таких дальномерах может доходить до 0.5 мм. Именно фазовый принцип используется в дальномерах, требующих большой точности измерения — геодезических дальномерах, лазерных рулетках, сканирующих дальномерах, устанавливаемых на роботах.
Однако у метода есть и недостатки — мощность излучения постоянно работающего лазера заметно меньше, чем у импульсного лазера, что не позволяет использовать фазовые дальномеры для измерения больших расстояний. Кроме того, измерение фазы с нужной точностью может занимать определенное время, что ограничивает быстродействие прибора.

Наиболее важный процесс в таком дальномере — это измерение разности фаз сигналов, которая и определяет точность измерения расстояния. Существуют различные способы измерения разности фаз, как аналоговые, так и цифровые. Аналоговые значительно проще, цифровые дают большую точность. При этом цифровыми методами измерить разность фаз высокочастотных сигналов сложнее — временная задержка между сигналами измеряется наносекундами (эта задержка возникает также, как и в импульсном дальномере).

Для того, чтобы упростить задачу, используют гетеродинное преобразование сигналов — сигналы от фотоприемника и лазера по отдельности смешивают с сигналом близкой частоты, который формируется дополнительным генератором — гетеродином. Частоты модулирующего сигнала и гетеродина различаются на килогерцы или единицы мегагерц. Из полученных сигналов при помощи ФНЧ выделяют сигналы разностной частоты.

Пример структурной схемы дальномера с гетеродином. М — генератор сигнала модуляции лазера, Г — гетеродин.

Разность фаз сигналов в таком преобразовании не изменяется. После этого разность фаз полученных низкочастотных сигналов измерить цифровыми методами значительно проще — можно легко оцифровать сигналы низкоскоростным АЦП, или измерить задержку между сигналами (при понижении частоты она заметно увеличивается) при помощи счетчика. Оба метода достаточно просто реализовать на микроконтроллере.

Есть и другой способ измерения разности фаз — цифровое синхронное детектирование. Если частота модулирующего сигнала не сильно велика (меньше 15 МГц), то такой сигнал можно оцифровать высокоскоростным АЦП, синхронизированным с сигналом модуляции лазера. Из теоремы Котельникова следует, что частота дискретизации при этом должна быть в два раза выше частоты модуляции лазера. Однако, так как оцифровывается узкополосный сигнал (кроме частоты модуляции, других сигналов на входе АЦП нет), то можно использовать метод субдискретизации, благодаря которому частоту дискретизации АЦП можно заметно снизить — до единиц мегагерц. Понятно, что аналоговая часть дальномера при этом упрощается.
Более подробно (с всеми нужными формулами) этот метод рассматривается здесь (на английском) и здесь (на русском).
В первой статье указывается, что если частота дискретизации сигнала (fsp) связана с частотой модуляции (fo) следующим соотношением:

где p — целое число, то процесс вычисления фазы значительно упрощается.
Достаточно взять N выборок сигнала X[i], после чего разность фаз можно вычислить по следующим формулам:

Отмечу, что оба вышеуказанных метода часто применяются вместе — низкочастотные сигналы подаются напрямую на АЦП, высокочастотные переносятся в область более низких частот за счет гетеродинного преобразования, и также подаются на АЦП.

Именно второй вариант фазометра, с использованием частоты модуляции 10МГц я и решил реализовать в своем макете дальномера.

Практика

Структурная схема моего дальномера:


Фактически, вся конструкция состоит из 3 частей — отладочной платы с микроконтроллером, усилителя сигнала лазера с самим лазером, и фотоприемника с усилителем и фильтром.
В вышеописанной теории предполагалось, что излучение лазера модулируется синусоидальным сигналом. Сформировать такой сигнал частотой 10Мгц с использованием контроллера непросто, поэтому в своей конструкции я подаю на лазер меандр частотой 10МГц. После усиления сигнала с фотоприемника от полученного сигнала отсекаются лишние гармоники полосовым LC-фильтром, настроенным на частоту 10МГц, в результате чего на выходе фильтра возникает сигнал, очень близкий к синусоидальному.

Схема аналоговой части (усилителя лазера и приемной части):

Схема была взята из проекта лазерной связи Ronja, описание на русском. В этом проекте как раз реализована передача данных со скоростью 10Mbit, что соответствует выбранной частоте модуляции.
Как видно из схемы — усилитель мощности для лазера простейший, собран на микросхеме 74HC04 (содержит 6 инверторов). Включение микросхемы не совсем корректное, но оно работает. Ток через лазер ограничивается резисторами (тоже не самое лучшее решение). Напряжение питания 5В для усилителя берется с отладочной платы.
Для того, чтобы сигнал с усилителя не наводился на остальную часть схемы, корпус усилителя сделан металлическим, все провода экранированы.
Сам лазер (красного цвета) взят из пишущего DVD-привода, его мощность можно установить достаточно высокой, и он гарантированно будет работать на частоте 10МГц.

Приемник состоит из фотодиода и усилителя, собранного на полевом транзисторе и микросхеме-высокоскоростном усилителе. Так как с увеличением расстояния освещенность фотодиода сильно падает, то усиление должно быть достаточно большим (в этой схеме оно примерно равно 4000). Кроме того, с ростом частоты заметно падает сигнал на выходе фотодиода (сказывается его емкость). Отмечу, что усилитель в данной конструкции — важнейшая и наиболее капризная часть. Как оказалось, его усиления явно не хватает. Изначально я предполагал, что коэффициент усиления можно будет менять (чтобы ослаблять сигнал при его слишком большой величине), используемая схема позволяет это делать, меняя напряжение на втором затворе транзистора. Однако оказалось, что при изменении усиления достаточно сильно изменяется вносимый усилителем сдвиг фаз, что ухудшает точность измерения расстояния, так что пришлось установить коэффициент усиления на максимум, подавая на затвор транзистора напряжение 3В с батарейки.
Приемнику для работы требуется напряжение 12В, так что для его питания приходится использовать отдельный блок питания.
Усилитель очень чувствителен к внешним наводкам, так что он тоже должен быть экранированным. Я взял готовый корпус от нерабочего оптического датчика, и разместил усилитель в нем (белая полоска — фольга для дополнительного экранирования фотодиода):

Отмечу, что наводка сигнала от лазера на приемник довольно сильно ухудшает точность измерения разности фаз, так что нужно контролировать, чтобы такая наводка отсутствовала.

LC-фильтр, используемый в дальномере — взят от приемника. Так как фильтр отсекает постоянную составляющую сигнала, а АЦП отрицательные сигналы не воспринимает, то ее приходится добавлять при помощи резисторного делителя R15, R16. Постоянное напряжение, подаваемое на делитель, берется c отладочной платы (VCC).

Отладочная плата — STM32F4-DISCOVERY. Ее выбрал потому, что для формирования двух достаточно различающихся частот нужен генератор достаточно высокой частоты (PLL STM32F4 может давать частоты больше 100МГц).
В формуле, связывающей частоту модуляции и дискретизации, коэффициент «p» я принял равным 6, так что при частоте модуляции 10МГц частота дискретизации должна быть 1.6МГц.

Для формирования частоты 10МГц используется таймер TIM2, работающий в режиме формирования ШИМ сигнала. При системной частоте 160МГц его период — 16 «тиков».
АЦП получает запросы на запуск от таймера TIM8. Для формирования частоты 1.6МГц его период — 100 «тиков». Все данные от АЦП при помощи DMA сохраняются в массив, размер которого должен быть равен двойке в N степени. Оба таймера, АЦП и DMA запускаются один раз при включении и больше уже не отключаются. Таким образом, так как таймеры тактируются от одного источника, а одному периоду измеряемого сигнала соответствуют четыре выборки данных, получается, что в массив всегда попадет целое число периодов сигнала.
Так как останавливать DMA не желательно (это упрощает управление захватом данных), при заполнении первой половины массива генерируется прерывание. Обнаружив, что половина массива заполнена, контроллер копирует ее содержимое в другой массив (в целях упрощения программы вторая половина основного массива при этом не используется). После этого полученные данные обрабатываются — вычисляется средняя амплитуда и фаза сигнала, проводится пересчет фазового сдвига в расстояние.
Полученные величины выводятся на ЖК индикатор от кассового аппарата, также подключенный к отладочной плате.

Дальномер должен знать где находится начало отсчета. Для его калибровки при включении на «нулевом» расстоянии от дальномера устанавливается объект, после чего на отладочной плате нужно нажать кнопку, при этом измеренное значение дальности записывается в память, после чего это значение будет вычитаться из измеренной дальномером дальности.

Как я уже отмечал выше, реализовать автоматическое управление усилением не удалось. При этом изменение амплитуды принятого сигнала приводит к изменению фазовых сдвигов в усилителе, и следовательно, к дополнительным ошибкам.
Поэтому мне пришлось регулировать освещенность фотодиода при помощи механической заслонки, поворачиваемой сервоприводом — при слишком большой освещенности заслонка перекрывает световой поток. ШИМ сигнал для управления приводом формируется таймером TIM3.

Про оптику. Без нее дальномер невозможен. Ее конструкция хорошо видна на фотографиях ниже. Лазер находится внутри пластиковой трубки, установленной вертикально. В нее вставлена небольшая втулка с зеркальной призмой. Втулку можно поворачивать, поднимать и опускать, перемещая таким образом луч лазера. Так как я догадывался, что усиления не хватит, то для приема сигнала использовал крупную линзу Френеля.
Так так лазер, линза и фотодиод установлены соосно, то на близких расстояниях лазер закрывает от фотодиода собственный луч. Для компенсации этого эффекта я установил вторую линзу (лупа с оправой), хотя полностью эффект не устраняется, поэтому максимальный сигнал наблюдается на расстоянии примерно 50-70 см от лазера.

А вот и фотографии получившейся конструкции:

На индикаторе первое число — амплитуда в единицах АЦП, второе число — расстояние в сантиметрах от края доски.

Видео работы дальномера:

Дальность работы у получившегося дальномера вышла достаточно небольшая: 1,5-2 м в зависимости от коэффициента отражения объекта.
Для того, чтобы увеличить дальность, можно использовать специальный отражатель, на который нужно будет направлять луч лазера.
Для экспериментов я сделал линзовый отражатель, состоящий из линзы, в фокусе которой расположена матовая бумага. Такая конструкция отражает свет в ту же точку, откуда он был выпущен, правда, диаметр луча при этом увеличивается.
Фотография отражателя:

Использование отражателя:

Как видно, расстояние до отражателя — 6.4 метра (в реальности было примерно 6.3). Сигнал при этом возрастает настолько, что его приходится ослаблять, направляя луч лазера на край отражателя.

Точность получившегося дальномера — 1-2 сантиметра, что соответствует точности измерения сдвига фаз — 0,2-0,5 градуса. При этом, для достижения такой точности, данные приходится слишком долго усреднять — на одно измерение уходит 0.5 сек. Возможно, это связано с использованием PLL для формирования сигналов — у него довольно большой джиттер. Хотя я считаю, что для самодельного макета, аналоговая часть которого сделана довольно коряво, в котором присутствуют достаточно длинные провода, даже такая точность — довольно неплохо.
Отмечу, что я не смог найти в Интернете ни одного существующего проекта фазового дальномера (хотя бы со схемой конструкции), что и послужило причиной написать эту статью.

Программа контроллера: ссылка

Принцип работы лазерного дальномера

Принцип работы лазерного дальномера

В ходе ремонта многочисленные промеры рулеткой и вычисления площади объектов требуют высокой концентрации и времени.

Справиться с этим помогают лазерные рулетки (дальномеры) — простые в эксплуатации приборы с высокой точностью измерения.

Они не только мгновенно определят расстояние, но и вычислят площадь, объем и другие характеристики объекта.

Принцип работы лазерного дальномера

Лазерный дальномер называют по-разному. Из-за умения измерять расстояние его окрестили электронной или лазерной рулеткой, хотя на самом деле традиционного для рулетки колеса в нем нет. Этим же объясняется и название лазерной линейки.

Дальномеры бывают импульсные и фазовые. Принцип действия импульсных дальномеров схож с принципом работы эхолотов. При включении лазерного дальномера в нем генерируется лазерный луч и посылается излучателем до объекта, например до ближайшей стены комнаты (в звуковых дальномерах генерируется ультразвук). Луч отражается от объекта и поступает в приемник устройства. По времени, которое проходит с момента передачи до приема луча, и определяется расстояние до объекта. Полученный сигнал обрабатывается микропроцессором умного устройства и передается на дисплей в понятном для восприятия виде. Фазовые дальномеры измеряют разность фаз волны (подробнее ниже).

Для проведения замера достаточно включить функцию лазерного луча, навести дальномер на объект и нажать кнопку измерения расстояния. Расчет площади, объема и прочих характеристик также происходит при нажатии на предусмотренные для этого кнопки.

Функции лазерных дальномеров

Определение расстояния из разных точек отсчета

У лазерного дальномера есть несколько точек отсчета, что связано с особенностями измерения. Луч лазера исходит из корпуса прибора, так что при измерении расстояния от одной стены до другой придется учитывать длину этого корпуса. Чтобы не пришлось вести такие подсчеты в уме, в дальномерах настраивается точка отсчета. Она ведется от заднего торца устройства, от переднего торца или от упорной скобы (при ее наличии). Когда нужно узнать точную длину объекта, скобу выдвигают на 90 градусов (фактически цепляют за край объекта). Если нужно мерить из угла, то скобу выдвигают на 180 градусов, ведь сам прибор строго в угол не поместится.

Измерение площади и объема

Для измерения лазерным дальномером площади прямоугольника нужно определить его длину, ширину и нажать на специальную кнопку. Прибор рассчитает площадь фигуры и выведет результат на экран. Для определения объема параллелепипеда придется измерить его длину, ширину и высоту. Некоторые электронные рулетки умеют измерять углы, площади и объемы более сложных фигур. Такие измерения помогут быстро определить площадь пола, потолка, стен или узнать объем конструкции. Последнее потребуется, например, при строительстве бассейна или установке кондиционера, когда нужно знать объем воздуха кондиционируемых комнат. В некоторых приборах есть специальная функция маляра, которая складывает длины стен помещения и умножает на высоту, чтобы узнать общую площадь окрашиваемого или оклеиваемого обоями помещения.

Непрерывные измерения

У лазерных рулеток есть один минус по сравнению с обычными рулетками. В то время как мерной лентой легко отступить от стены на заданное расстояние, лазерной линейке нужна поверхность, от которой отразится луч. Для решения этой проблемы придумана функция непрерывных измерений. То есть если нужно отступить от стены, положим, на полтора метра, нужно включить эту функцию и постепенно отходить от стены. В это время прибор будет делать промеры через 1 секунду (зависит от настроек), что поможет отступить на точно заданное расстояние.

Измерения на основе вычислений

Если длину линии по каким-то причинам измерить прибором не получается, можно рассчитать ее по определенным формулам. Представим, что у помещения наклонная крыша. Тогда для определения длины наклонной линии понадобится не прямоугольник, а трапеция. Измерить три линии этой трапеции дальномером труда не составит, в то время как длину четвертой линии прибор рассчитает сам по функции трапеции.

Аналогично рассчитывается и высота до объекта, если напрямую измерить ее затруднительно. Тогда измеряется расстояние до этой точки по диагонали (гипотенуза) и по горизонтали (первый катет). По известной со школьного курса геометрии теореме Пифагора прибор рассчитает вертикаль (второй катет). Такой расчет возможен только для прямоугольных треугольников, то есть в случае вертикальных, а не наклонных поверхностей.

Определение минимума и максимума

Определить с помощью лазерной рулетки длину диагонали большой комнаты не так-то просто, поскольку нужно четкое попадание из угла в угол. Режим максимума помогает снизить риск ошибки и предполагает проведение нескольких последовательных замеров. Прибор ориентируется на первый замер и считает его наименьшим. Если при последующих замерах найдется большее значение, то оно и будет считаться длиной диагонали. Это делается из соображений, что длина диагонали всегда является наибольшей величиной из всех возможных длин помещения.

Режим минимума аналогичен предыдущему и снижает риски измерить расстояние не строго под прямым углом, а по диагонали. Например, нужно измерить расстояние от пола до потолка. Тогда в режиме минимума прибор найдет наименьшее из всех измеренных значений.

Виды лазерных дальномеров

По назначению лазерные дальномеры делят на бытовые и профессиональные. Первые чаще всего имеют небольшую (до 10 м) или среднюю (до 50 м) дальность измерения, и ограниченный функционал. Профессиональные электронные рулетки способны измерять расстояния более двухсот метров, имеют широкий набор функций и могут работать в сложных погодных условиях. Большая дальность необходима при возведении крупных объектов, измерении территории и в других случаях.

По области применения лазерные рулетки делятся на разные категории. Есть дальномеры для промышленности, военной сферы, геодезии, строительства. Есть гаджеты для рыбалки, охоты и даже для гольфа! Они отличаются друг от друга как по внешнему виду, так и по набору функций, так как призваны решать разные задачи. Например, качественный лазерный дальномер для охоты ориентирован на работу в условиях дождя, пыли, высокой влажности, мороза, умеет игнорировать траву, ветки деревьев и рассеянные в воздухе частицы вроде снежинок или дождинок.

По принципу работы бывают импульсные дальномеры и фазовые. Импульсные содержат встроенный таймер, с помощью которого определяют время отражения луча от объекта. На основании времени и скорости света рассчитывается расстояние. У импульсных лазерных рулеток мощный лазер, так что они могут измерять значительные расстояния, но обладают меньшей точностью по сравнению с фазовыми. Снижение точности связано с тем, что на расстоянии даже в несколько сот метров световой луч отражается слишком быстро (скорость света 300 тыс. км/с), что требует сверхточного таймера. Свое название импульсные рулетки получили из-за того, что в них луч лазера посылается импульсами.

В фазовых лазерных дальномерах луч посылается постоянно и модулируется сигналом определенной частоты. Отраженная от объекта волна фиксируется фотоприемником. Волна посылается в одной фазе, а отражается в другой, так что разность фаз и позволяет вычислить расстояние до объекта. Фазовые рулетки более точны, но из-за постоянной работы лазера теряют в мощности луча, потому используются в основном для измерения на небольших расстояниях.

Как выбрать лазерный дальномер       

При выборе лазерного дальномера советуем определиться с теми задачами, для которых он приобретается. От этого будут зависеть и характеристики гаджета.Максимум и минимум измерений. Для дома подойдет лазерная линейка с дальностью до 30 метров. Но для измерений на улице или в больших помещениях имеет смысл покупать прибор с высоким максимумом (100 и более метров). Минимум связан с тем, что лазерный дальномер не может измерять маленькое расстояние, как обычная линейка. У одних приборов этот показатель составляет около полуметра, у других — только пять сантиметров (чем дороже, тем шире шкала измерений).

Количество точек начала отсчета. Отсчет можно вести от верхнего края электронной рулетки, нижнего края и скобы (см. выше). Чем больше точек отсчета, тем точнее измерения.

Функционал. Помимо функциональных возможностей (расчета площади, объема, непрерывных измерений, сохранения измерений в память и пр.) советуем обратить внимание и на наличие автоотключения, жидкостного уровня для точной установки прибора, возможности установки на штатив, наличие дополнительных функций (уклономера, видоискателя, цифрового уровня и пр.).

Длина волны и класс лазера. Чем короче длина волны, тем лучше видно луч. Измеряется эта величина в нанометрах. Класс лазера характеризует его мощность и безопасность для глаз. Чем выше класс, тем мощнее луч. Его лучше видно в сложных условиях, но и опасность повреждения глаз при попадании в них лазерного луча возрастает. Безопасным и наиболее распространенным считает второй класс, в то время как использовать дальномер с лазером третьего класса рекомендуется только в защитных очках.

Другие характеристики. Среди них диапазон рабочих температур, подсветка и звуковая индикация, комплектация (наличие USB-зарядки, штатива, сумки, ремешка, адаптера), степень защиты от ударов, влаги и прочего и габариты прибора.

 

Лазерные дальномеры — устройства для измерения расстояния с широкой сферой применения

Дальномеры при работе постоянно излучают сигнал, частота которого не превышает 500 МГц. Волна имеет неизменную длину (500-1100 нанометров). Фотоприёмник принимает отражающийся от объекта импульс. Расстояние определяется на основании расчёта разницы между изначальной и конечной фазами сигнала. Такие приборы обеспечивают высокую точность измерений при удалённости объекта не более 1 км.

Сфера применения

  • Строительство.
  • Некоторые виды геодезических работ.
  • Сканеры.
  • Робототехника.
  • Навигация.
  • Геодезия.
  • Военное дело.
  • Астрономия и т.д.

Характеристики прибора

Вне зависимости от того, какими дополнительными опциями оснащён лазерный дальномер, он обладает следующими характеристиками:

  • Диапазон измерений (показывает максимальное расстояние, на котором прибор может измерить параметры объекта с точностью, заявленной производителем. У современных моделей этот показатель достигает 100 м).
  • Точность (допустимая погрешность в измерениях. Обычно находится в пределах 3 мм).
  • Питание. Обычно осуществляется от элементов АА или ААА (так называемых «пальчиковых» или «мизинчиковых» батареек). Некоторые модели питаются от аккумуляторов или элементов питания нестандартных типов, однако лучше выбрать прибор на классических батареях, которые без труда можно найти в магазине.
  • Масса. Современные компактные дальномеры весят до 150 грамм. Более тяжёлые модели неудобны в использовании, особенно если с прибором приходится работать постоянно.

Дополнительные функции

Наиболее популярными являются следующие дополнения:

  • Уровень (с его помощью можно определить отклонения плоскостей по вертикали и горизонтали).
  • Угломер (в совокупности с уровнем позволяет производить одновременно несколько измерений).
  • Защита от пыли и влаги. Дальномеры являются точными электронными устройствами. Попадание внутрь пыли или влаги может привести к выходу его из строя. Защищёнными корпусами оснащаются практически все современные модели. Однако если прибор планируется эксплуатировать в неблагоприятных условиях, рекомендуется выбрать вариант с повышенной защитой. Дополнительно можно приобрести специальный чехол.
  • Подсветка. Даже на дорогостоящих моделях со множеством дополнительных опций иногда можно встретить монохромный дисплей и клавиатуру без подсветки. Такие приборы не очень удобны в эксплуатации. Лучше выбрать устройство с активируемой либо постоянной подсветкой и цветным дисплеем.
  • Дальномер, оснащённый этой функцией, можно подключить к смартфону, планшету или ноутбуку для сохранения, анализа и передачи данных. Если выполнять все эти действия вручную, темп работы существенно снизится.

Критерии выбора лазерного дальномера

Главное, чтобы прибор мог справиться с поставленной задачей. Чтобы не ошибиться, рекомендуется обратить внимание на несколько важных факторов.

Место проведения измерений

При ярком солнечном свете лазерный луч можно визуально распознать на расстоянии до 10 м. Для замеров на более дальних дистанциях в дальномер должен быть встроен оптический или цифровой визир. При работе на больших открытых площадках следует выбирать устройства с повышенной дальностью и точностью. В помещениях можно использовать любую модель.

Точность и диапазон

Стандартные дальномеры обеспечивает точность 1-3 мм на расстоянии от 50 см до 100 м. 

Условия

Уровень защиты большинства современных дальномеров — IP54. Первая цифра обозначает степень пыленепроницаемости. Показатель 5 говорит о том, что попадание пыли внутрь корпуса в малых количествах не исключается, однако работе прибора это не помешает.

Вторая цифра – защита от влаги. Дальномер с уровнем 4 вряд ли выдержит полное погружение в воду, однако вполне может работать под дождём и брызгами.

В большинстве случаев таких параметров бывает достаточно для бесперебойной работы устройства. Однако если на площадке в большом количестве присутствует мелкая пыль или на прибор может попасть вода, рекомендуется выбрать модель с усиленной защитой либо купить специальный чехол.

Устройство лазерного дальномера

Лазерный дальномер предназначен для измерения расстояний.

Работа этого прибора основана на следующем принципе: он посылает лазерный сигнал, который отражается от объекта и возвращается обратно, измеряет время его прохождения и относительно него высчитывает расстояние до объекта.

Большинство современных дальномеров имеет компактную форму и удобны в применении.

Чтобы пользоваться таким устройством, не нужно особых умений. 

Основные элементы строительного дальномера

  1. Оптический лазерный излучатель — служит для генерирования и посылки луча в нужную точку.
  2. Оптический отражатель — принимает отражённый луч.
  3. Компьютерный преобразователь или микропроцессор.
  4. Встроенная программа вычислений — предназначена для обработки результатов измерений и выдачи их в нужном виде.
  5. Фиксатор дальномера.
  6. Оптический прицел — позволяет направить луч точно в нужное место.
  7. Пузырьковый уровень.Строительный лазерный дальномер: выбор и эксплуатацияПузырьковый уровень, встроенный в лазерный дальномер, позволяет устанавливать прибор ровно на поверхности

В строительных лазерных дальномерах есть блокнот и калькулятор. Прибор сам будет производить вычисления и сохранять данные в памяти.

Виды дальномеров

По принципу работы лазерные дальномеры разделяются на фазовые и импульсные.

Фазовые измерители

Фазовые дальномеры имеют не очень большую дальность действия, но они намного точнее в силу принципа своей работы и дешевле из-за того, что в них не встраивают дорогой сверхточный таймер.

Фазовый дальномер работает на небольших расстояниях, но имеет хорошую точность и низкую цену

Принцип работы дальномеров такого типа заключается в том, что лазерная волна посылается на объект с одной фазой, а отражаясь, возвращается с другой. Рассчитав сдвиг фаз, прибор определяет расстояние до объекта. Благодаря такому принципу работы измерения фазовым дальномером имеют высокую точность. При необходимости работы на расстояниях, превышающих длину излучаемой волны, прибор посылает сигнал несколько раз, изменяя частоту модуляции. Затем процессор устройства определяет точное расстояние до цели путём решения системы линейных уравнений.

Импульсные измерители

Импульсный дальномер состоит из детектора излучения и импульсного лазера. Он вычисляет расстояние до объекта путём умножения времени прохождения луча на величину скорости света. Импульсные измерители работают на гораздо больших расстояниях, чем фазовые, благодаря более высокой мощности излучаемого импульса. Такие дальномеры часто применяют для военных прицелов.

Видео: принцип работы лазерного дальномера

https://www.youtube.com/embed/94SHhVWcnBk

Применение и функции лазерного дальномера

С помощью лазерной рулетки можно рассчитать объём, вычислить площадь помещения, замерить сложные недоступные отрезки, определить длину ската крыши и угол его наклона, найти площадь стены с наклоном у потолка, а также её диагональ.

Дополнительные функции некоторых современных дальномеров

  1. Подсветка.
  2. Ватерпас или пузырьковый уровень. Это приспособление чаще всего устанавливают на строительных лазерных рулетках. Оно поможет определить, ровно ли располагается прибор на поверхности.
  3. Визир — специальное устройство, приближающее точку, до которой ведётся измерение. Функция работает аналогично цифровому увеличению (зуму) на видеокамерах и особенно актуальна для работы на больших расстояниях.
  4. Дисплей с цветным экраном.
  5. Измеритель температуры воздуха. Допустимые погодные условия для использования каждого прибора указаны в инструкции. В любом случае при работе на морозе необходимо дать устройству некоторое время на адаптацию к окружающей температуре.
  6. Датчик для измерения наклона в пределах до 45°. Он нужен для проведения расчёта угла ската крыши, наклона навеса и других аналогичных операций. Лазерный дальномер со встроенным датчиком измерения угла наклона позволяет вычислять расстояния на криволинейной поверхности
  7. Индикатор уровня зарядки батареи.
  8. Функция Bluetooth.
  9. Трекинг — непрерывное измерение расстояний. При перемещении дальномера трекинг производит замеры не один, а несколько раз с определённой периодичностью и показывает получаемые результаты. Такая опция необходима для того, чтобы отмерить нужную длину конструкции или помещения.
  10. Различные математические функции.

Работа с лазерной рулеткой

  1. Установить и зафиксировать прибор в точке начала измерений.
  2. Включить дальномер при помощи специальной кнопки.
  3. Выбрать нужную точку отсчёта. Во многих моделях для удобства встроена возможность выбора точки — от передней части корпуса прибора или от задней. Такая функция нужна для определения расстояния без учёта размеров корпуса. Некоторые устройства также оснащены специальными скобами, позволяющими проводить измерения в неудобных местах. Точку отсчёта в них можно выбрать от края корпуса либо от самой скобы.
  4. Выбрать необходимые единицы измерения.
  5. Начать измерения, нажав функциональную кнопку.
  6. Просмотреть результат на дисплее прибора.

Например, если нужно определить расстояние от одной стены до другой, необходимо провести следующие действия:

  1. Установить прибор на одной стене.
  2. Убедиться, что прибор зафиксирован ровно на поверхности и плотно у стены.
  3. Назначить точкой отсчёта прижатую часть корпуса. Это позволит учесть в расчётах толщину самой рулетки.
  4. Включить функцию начала замеров.
  5. Посмотреть полученные результаты на экране. Для того чтобы измерить необходимое расстояние, нужно приложить прибор к стене и нажать функциональную кнопку — все остальные действия прибор произведёт сам.

Для получения более точных расчётов не рекомендуется держать прибор в руках при измерении. Запрещается направлять лазерный луч прибора в лицо, потому что он может обжечь сетчатку глаза.

Видео: как пользоваться лазерной рулеткой

https://www.youtube.com/embed/2d7TMAku4Eo

Правила эксплуатации дальномера

  1. Лазерную рулетку следует эксплуатировать согласно технической инструкции.
  2. Нельзя допускать попадания влаги и грязи в прибор, а также перегрева и переохлаждения дальномера.
  3. Необходимо беречь прибор от падения и ударов.
  4. Проводить ремонт дальномера следует только в специальных мастерских.
  5. Хранить лазерный дальномер рекомендуется в специальном чехле.

Устройство компактного лазерного строительного дальномера

Устройство лазерного дальномера состоит из следующих узлов:

Схема работы лазерного дальномера

  1. Излучатель – он генерирует луч и отправляет его в нужную точку.
  2. Отражатель – он необходим для приема, отраженного от объекта луча.
  3. Микропроцессор, для выполнения необходимых расчетов.
  4. Предустановленная программа необходимая для обработки полученных при замерах данных.
  5. Прицел, позволяющий направить луч в необходимое место.
  6. Уровень, с помощью которого прибор можно строго выставить в горизонтальной или вертикальной плоскости.

Дополнительные функции

Применяемая в составе лазерных дальномеров микроэлектроника позволяет не только выполнять прямые замеры. Многие устройства подобного типа обладают некоторыми дополнительными функции, к которым можно отнести:

1. Функция непрерывного измерения. При работе в обычном режиме дальномер при нажатии кнопки на пульте фиксирует результат и выводит его на монитор. Но, довольно часто, возникает необходимость в проведении постоянного измерения расстояния, например, от стены до будущей перегородки. Для этого прибор переводят в режим непрерывного измерения. В таком режиме работы, устройство с некоторой частотой самостоятельно выполняет замер и показывает их результаты на монитор. Измерение проходит в реальном режиме времени.

2. Определение наибольшего и наименьшего расстояния. Эта функция полезна при определении диагонали в комнате. Дело в том, что выполнить ее замер не так и просто при направлении лазерного луча можно промахнуться и в результате будут получены неточные результаты. После установки на приборе минимального расстояния, он будет фиксировать только те замеры, которые больше установленной.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Как выбрать лазерный дальномер (2019) | Лазерные дальномеры, нивелиры | Блог

Лазерный дальномер способен значительно облегчить жизнь строителя или мастера-отделочника. Если отдельную деталь пока еще проще померить обычной рулеткой, то, как только дело доходит до размеров комнат, высоты потолков или расстояний между конструкциями, лазерный дальномер становится вне конкуренции. А многие модели еще и умеют запоминать измерения и вычислять по ним площадь или кубатуру помещения. Поэтому лазерные дальномеры стали незаменимыми помощниками многих специалистов, оперирующих в своей деятельности площадями и объемами комнат. Так что область применения этих приборов очень широка:

  • строительство и отделка;
  • монтаж конструкций и коммуникаций;
  • дизайн помещений и ландшафтный дизайн;
  • земляные работы;
  • проектирование вентиляции и кондиционирования;
  • инспекционные работы;
  • охота;
  • и т.д.

Ну и понятно, что дальномер, используемый землемером и дальномер, используемый дизайнером квартир – это совершенно разные дальномеры с разными характеристиками.

Характеристики лазерных дальномеров

Тип.

Лазерный дальномер улавливает отраженный от препятствия лазерный луч и вычисляет расстояние по сдвигу фазы сигнала, которым этот луч модулируется. Лазерные дальномеры отличаются высокой точностью измерений – до десятых долей миллиметра.

Удобно то, что дальномер измеряет расстояние именно до той точки, которая подсвечена лазером. Из недостатков можно отметить частую для лазерных инструментов «нелюбовь» к яркому солнечному свету и невозможность определения расстояния до прозрачных объектов (окон, стеллажей и пр.) Впрочем, если вдруг возникает необходимость измерить расстояние именно до поверхности стекла, на него всегда можно прилепить кусочек бумаги.

Ультразвуковой дальномер, вообще-то, к лазерным устройствам не относится – для измерений он использует принцип эхолокации – определяя расстояние по запаздыванию отразившейся от препятствия звуковой волны.

С лазерными дальномерами его роднит только использование лазерного светодиода для создания световой отметки, облегчающего «прицеливание» на объект, до которого измеряется расстояние. Однако, следует понимать, что испускаемый дальномером звуковой пучок расходится довольно широко и может отражаться от различных поверхностей, внося искажения в результат.

К примеру, если измерять расстояние до балки, расположенной на некотором расстоянии от стены, дальномер покажет расстояние до стены (хотя лазерный «зайчик» будет на балке), поскольку отраженный от неё сигнал будет сильнее.

Кроме того, по дальности и точности ультразвуковой дальномер сильно уступает лазерному – звук затухает намного быстрее лазерного луча, и скорость его зависит от погодных условий. Несколько лет назад ультразвуковые дальномеры были заметно дешевле лазерных, но сегодня это уже не так. Преимуществами ультразвуковых дальномеров остаются только невосприимчивость к яркому свету и возможность измерения расстояния до прозрачных плоскостей.

Максимальное расстояние измерений определяет область применения прибора.

Специалистам, работающим в квартирах и помещениях частных домов, будет вполне достаточно 20 м.

При работе в больших помещениях уже нужна возможность измерения на расстояниях до 40 м.

Максимум в 100 метров и более потребуется при работе на открытом воздухе или в очень больших помещениях (ангарах, складах, стадионах и т.п.)

Но имейте в виду, что на открытом воздухе световую отметку невооруженным глазом не видно уже метров с 15-20 (зависит от освещения), да и точность на таком удалении при измерении с рук будет невысока. Поэтому для работы на расстояниях от 40 метров желательно наличие видоискателя с зумом и крепления на штатив.

Многие модели ограничены и минимальным расстоянием измерений – оси передатчика и приемника обычно разнесены, поэтому, при малом расстоянии до точки отражения, отраженный луч просто не попадает в приемник. Обратите на это внимание, если вам важна возможность измерения небольших расстояний.

Погрешность определяет точность прибора. Для ультразвуковых дальномеров погрешность составляет 3-5 мм, для лазерных меньше, в среднем – 1-2 мм. Впрочем, бывают и специализированные охотничьи модели, которым высокая точность не требуется – они могут иметь погрешность до 1 метра.

Обычно дальномер считает расстояние до объекта от заднего торца прибора. Это удобно при работе внутри помещения. Но иногда бывает удобнее использовать другую точку начала отсчета – передний торец прибора при работе с внешними углами снаружи здания или точку крепления штатива – при работе со штатива. Количество точек для начала отсчета как раз и определяет возможность измерения от различных точек относительно самого прибора.

Длина волны лазера определяет цвет его луча. В лазерной технике обычно используются два вида лазеров – зеленые, с длиной волны 535-550 нм и красные – с длиной 635-650 нм. Это обусловлено тем, что человеческий глаз лучше всего видит именно красный и зеленый цвета. Причем зеленый чуть лучше, но этот цвет часто встречается в окружающем пространстве, а на нем зеленая точка хуже различима, чем красная, поэтому красный лазер используется чаще.

Следует отметить, что измерение расстояния происходит не мгновенно, – в зависимости от быстродействия устройства и измеряемого расстояния, прибор может потратить на это несколько секунд. Если такая задержка для вас неприемлема, обратите внимание на максимальное время измерения при подборе дальномера.

При замере множества расстояний бывает удобно, если у прибора есть возможность хранения замеров во встроенной памяти. Количество сохраняемых замеров у различных приборов может изменяться от одного до нескольких сотен.

Основное, что отличает дорогие профессиональные модели от простых бытовых – это расширенный набор функций. Самые простые дальномеры способны измерять только расстояние до подсвеченной точки.

Модели подороже способны на основе проведенных измерений автоматически подсчитать площадь или объем помещения.

Модели среднего ценового сегмента могут иметь следующие возможности:

  • Функция Пифагора: возможность косвенного измерения различных величин по двум или более точкам. Например, для измерения высоты здания с некоторого расстояния производится измерение сначала расстояния до точки у основания, а затем – у верхушки здания. После чего электроника дальномера вычисляет искомую высоту. Более точный расчет высоты доступен для моделей с жидкостным уровнем или датчиком угла наклона – это позволяет определить точку пересечения горизонтальной линии от дальномера с измеряемой высотой.

  • Функция маляра: автоматический подсчет суммарной площади нескольких стен. Функция бывает полезна при подсчете количества требуемых стеновых покрытий, например, обоев или плитки.
  • Определение минимума и максимума. Любой дальномер показывает расстояние до подсвеченной точки. Но иногда бывает нужно не узнать расстояние до определенной точки, а найти максимум или минимум каких-либо размеров. В этом случае поможет данная функция – она показывает не измеренное расстояние, а максимальное или минимальное из нескольких измерений. Определение минимума позволяет быстро найти длину перпендикуляра до стены, а определение максимума – так же быстро определить длину диагонали комнаты.
  • Измерение трапеции позволяет вычислить длину одной из сторон трапеции по трем другим сторонам. С помощью этой функции можно посчитать, например, длину стропил, проходящих на большой высоте от пола.
  • Разметка равных отрезков позволяет разделить заданную длину на некоторое количество одинаковых отрезков. Эта функция может помочь при установке балясин, столбиков, посадке деревьев и кустов на одинаковых расстояниях и пр.

Профессиональные модели способны и на более сложные вычисления:

  • Подсчет площади по нескольким точкам позволяет подсчитать площадь сложных фигур, находясь на расстоянии десятков метров от них.

  • Подсчет углов наклона линий и плоскостей по нескольким измеренным точкам. Функция приближает прибор по возможностям к лазерным нивелирам и может быть полезна многим специалистам: от отделочников и строителей до геодезистов и ландшафтных дизайнеров.
  • Создание фотографий объектов с наложенными результатами измерений.

Отдельным набором функции снабжаются охотничьи дальномеры: например, баллистический калькулятор, определяющий снижение траектории полета пули на измеренной дальности; функция «игнорирования листвы», отсеивающая отражения от листьев и травы на близких расстояниях и т.д.

Если вы приобретаете прибор для профессиональной деятельности, и результаты измерений будут вноситься в официальные документы, будет нелишним, если дальномер внесен в Госреестр средств измерений (в некоторых областях деятельности это даже оговорено нормативными документами). В любом случае, наличие прибора в Госреестре СИ позволяет проводить его поверку в метрологических центрах, что обеспечит юридическое подтверждение достоверности измерений.

Как и всякий строительный инструмент, дальномер подвержен воздействию различных неблагоприятных факторов, в том числе – пыли и влаги. Поэтому при его выборе нелишним будет обратить внимание на степень защиты. Она определяется маркировкой IPXY, IP (Internal Protection – внутренняя защита), X – уровень защиты от твердых предметов и частиц, Y – уровень защиты от влаги. Чем больше число, тем выше уровень защиты:

Варианты выбора лазерных дальномеров

Если вы ищете инструмент, который бы с успехом заменил строительную рулетку, но при этом стоил ненамного дороже, выбирайте среди простых лазерных дальномеров с минимумом функций.

Если вам важна точность измерений, обратите внимание на модели с низкой погрешностью измерений.

Для работы в квартирах и частных домах будет достаточно дальномера с максимальным измеряемым расстоянием до 20 м.

Все лазерные дальномеры имеют собственный источник питания. Если вам проще сменить комплект батареек, чем таскать с собой зарядное устройство, выбирайте модель с питанием от батарей. В обратном же случае делайте выбор среди аккумуляторных моделей.

Лазерный дальномер с максимальным измеряемым расстоянием от 100 метров наиболее универсален: он будет одинаково полезен и в помещениях любого размера, и на улице.

Если вы увлекаетесь охотой, то лазерный дальномер с максимальным расстоянием в 500-1500 метров поможет вам совершить удачный выстрел.

Лазерный дальномер - принцип работы и сравнение

Если хорошо изучить лазерный дальномер, принцип работы прибора, то будет проще сориентироваться среди представленных моделей подобных устройств. Измерение дальности с помощью импульсного способа предполагает использование формулы L = ct/2, где с является скоростью распространения, а Т – временем, затрачиваемым на прохождение импульса. Наибольшей точностью обладают приборы, которые позволяют получать короткие импульсы.

Измерить дальность можно:

  • Фазовым,
  • Импульсным,
  • Фазо-импульсным способом.

И наибольший интерес представляет именно импульсный метод, в процессе которого отправляется зондирующий импульс, достигающий поверхности, и в это время запускается счетчик, считающий время прохождения сигнала. После отражения импульс возвращается к лазерному дальномеру и происходит остановка счетчика, тем самым, фиксируется расстояние.

Модели

Перед принятием решения о покупке, нужно сделать лазерные дальномеры сравнение, взяв для анализа наиболее популярные модели. Среди приборов, специально созданных для определения расстояния, выделяются:

  • Лазерные бинокли Carl Zeiss,
  • Лазерные дальномеры Bushnell, Leica Rangemaster и Carl Zeiss,
  • Бинокли и дальномеры от компаний Nikon, Zenit и Sturman.

Предварительно нужно определиться с целями, для которых вы планируете использовать лазерный прибор, и тогда будет проще сделать правильную покупку. Лазерные рулетки активно используются вооруженными силами, в том числе среди основных пользователей:

  • Наземная военная техника,
  • Авиация,
  • Морской флот,
  • Артиллерия.

Также активными пользователями являются охотники, потому что подобные приборы позволяют быстро определять расстояние до мишени и увеличивать количество добытых трофеев. Но еще одним направлением, где применяются данные электронные устройства, является строительство, потому что специалисты получают возможность для определения габаритных размеров и уровней помещения и различных сооружений.

Применение

Когда человек знает лазерный дальномер принцип работы, он способен использовать его с максимальной эффективностью. И если он работает с таким прибором на строительном объекте, то он сможет:

  • Быстро вычислить площадь,
  • Осуществить передачу данных на компьютерную технику,
  • Замерить недоступные объекты.

Кроме того, данные устройства обладают надежной степенью защиты от пыли и механического воздействия. Лазерными рулетками пользуются даже в тех случаях, когда температура опускается на максимально низкий уровень.

Обычно дальномеры выполняются в прочном пластиковом корпусе, на котором имеются кнопки для управления и дисплей для наблюдения за получаемыми данными.

Если вы знаете дальномер лазерный, как работает, можете сразу включать прибор и направить луч на ближайший объект, чтобы быстро произвести измерение. Некоторые приборы подобного типа снабжаются дополнительно штативами и прочими приспособлениями.

Для того чтобы осуществлялось питание, пользуются аккумуляторными батарейками 1,5 В, тип АА. Для гарантированно длительного действия прибора, нужно иметь запасной комплект элементов питания.

Фазовые дальномеры

Чтобы работал фазовый дальномер, применяется синусоидальный принцип, когда происходит сравнение фаз отправленного и отраженного сигнала. Когда получается результат подобных измерений – это расстояние. Данные рулетки отличаются высоким уровнем точности, к тому же они относятся к дорогостоящим.

Есть разные режимы работы данных приборов:

  • Стандартные,
  • Сканирования,
  • Для неблагоприятных условий эксплуатации,
  • Зеркальные.

Выбор

Выбирая лазерный дальномер Лейка, нужно ориентироваться на его габариты и на технические возможности, чтобы он мог выполнять все поставленные задачи и точно определять дальность.

Нужно оценить максимальное расстояние, на которое способен действовать прибор, оно может достигать 1 километра. Также важным фактором является объем памяти, которым обладает лазерный дальномер Лейка, потому что при длительной работе и получении большого объема информации, недостаточная память способна снизить эффективность процесса.

Необходимо требовать сертификат качества при покупке лазерного дальномера и всегда рассчитывать на гарантию, предоставляемую продавцами электронных устройств. Профессиональные рулетки оснащаются дополнительными функциями и приспособлениями, позволяющими выполнять более сложные измерения.

Самодельный фазовый лазерный дальномер


В статье я расскажу о том, как я делал лазерный дальномер и о принципе его работы. Сразу отмечу, что конструкция представляет собой макет, и ее нельзя использовать для практического применения. Делалась она только для того, чтобы убедится в том, что фазовый дальномер реально собрать самому.

Теория

Часто приходится встречать мнение, что с помощью лазера расстояние измеряют только путем прямого измерения времени «полета» лазерного импульса от лазера до отражающего объекта и обратно. На самом деле, этот метод (его называют импульсным или времяпролетным, TOF) применяют в основном в тех случаях, когда расстояния до нужного объекта достаточно велики (>100м). Так как скорость света очень велика, то за один импульс лазера достаточно сложно с большой точностью измерить время пролета света, и следовательно, расстояние. Свет проходит 1 метр примерно за 3.3 нс, так что точность измерения времени должна быть наносекундная, хотя точность измерения расстояния при этом все равно будет составлять десятки сантиметров. Для измерения временных интервалов с такой точностью используют ПЛИС и специализированные микросхемы.


Однако существуют и другие лазерные методы изменения расстояния, одним из них является фазовый. В этом методе, в отличие от предыдущего, лазер работает постоянно, но его излучение амплитудно модулируется сигналом определенной частоты (обычно это частоты меньше 500МГц). Отмечу, что длина волны лазера при этом остается неизменной (она находится в пределах 500 — 1100 нм).
Отраженное от объекта излучение принимается фотоприемником, и его фаза сравнивается с фазой опорного сигнала — от лазера. Наличие задержки при распространении волны создает сдвиг фаз, который и измеряется дальномером.
Расстояние определяется по формуле:

Где с — скорость света, f — частота модуляции лазера, фи — фазовый сдвиг.
Эта формула справедлива только в том случае, если расстояние до объекта меньше половины длины волны модулирующего сигнала, которая равна с / 2f.
Если частота модуляции равна 10МГц, то измеряемое расстояние может доходить до 15 метров, и при изменении расстояния от 0 до 15 метров разность фаз будет меняться от 0 до 360 градусов. Изменение сдвига фаз на 1 градус в таком случае соответствует перемещению объекта примерно на 4 см.
При превышении этого расстояния возникает неоднозначность — невозможно определить, сколько периодов волны укладывается в измеряемом расстоянии. Для разрешения неоднозначности частоту модуляции лазера переключают, после чего решают получившуюся систему уравнений.
Самый простой случай — использование двух частот, на низкой приблизительно определяют расстояние до объекта (но максимальное расстояние все равно ограничено), на высокой определяют расстояние с нужной точностью — при одинаковой точности измерения фазового сдвига, при использовании высокой частоты точность измерения расстояния будет заметно выше.

Так как существуют относительно простые способы измерять фазовый сдвиг с высокой точностью, то точность измерения расстояния в таких дальномерах может доходить до 0.5 мм. Именно фазовый принцип используется в дальномерах, требующих большой точности измерения — геодезических дальномерах, лазерных рулетках, сканирующих дальномерах, устанавливаемых на роботах.
Однако у метода есть и недостатки — мощность излучения постоянно работающего лазера заметно меньше, чем у импульсного лазера, что не позволяет использовать фазовые дальномеры для измерения больших расстояний. Кроме того, измерение фазы с нужной точностью может занимать определенное время, что ограничивает быстродействие прибора.

Наиболее важный процесс в таком дальномере — это измерение разности фаз сигналов, которая и определяет точность измерения расстояния. Существуют различные способы измерения разности фаз, как аналоговые, так и цифровые. Аналоговые значительно проще, цифровые дают большую точность. При этом цифровыми методами измерить разность фаз высокочастотных сигналов сложнее — временная задержка между сигналами измеряется наносекундами (эта задержка возникает также, как и в импульсном дальномере).

Для того, чтобы упростить задачу, используют гетеродинное преобразование сигналов — сигналы от фотоприемника и лазера по отдельности смешивают с сигналом близкой частоты, который формируется дополнительным генератором — гетеродином. Частоты модулирующего сигнала и гетеродина различаются на килогерцы или единицы мегагерц. Из полученных сигналов при помощи ФНЧ выделяют сигналы разностной частоты.

Пример структурной схемы дальномера с гетеродином. М — генератор сигнала модуляции лазера, Г — гетеродин.

Разность фаз сигналов в таком преобразовании не изменяется. После этого разность фаз полученных низкочастотных сигналов измерить цифровыми методами значительно проще — можно легко оцифровать сигналы низкоскоростным АЦП, или измерить задержку между сигналами (при понижении частоты она заметно увеличивается) при помощи счетчика. Оба метода достаточно просто реализовать на микроконтроллере.

Есть и другой способ измерения разности фаз — цифровое синхронное детектирование. Если частота модулирующего сигнала не сильно велика (меньше 15 МГц), то такой сигнал можно оцифровать высокоскоростным АЦП, синхронизированным с сигналом модуляции лазера. Из теоремы Котельникова следует, что частота дискретизации при этом должна быть в два раза выше частоты модуляции лазера. Однако, так как оцифровывается узкополосный сигнал (кроме частоты модуляции, других сигналов на входе АЦП нет), то можно использовать метод субдискретизации, благодаря которому частоту дискретизации АЦП можно заметно снизить — до единиц мегагерц. Понятно, что аналоговая часть дальномера при этом упрощается.
Более подробно (с всеми нужными формулами) этот метод рассматривается здесь (на английском) и здесь (на русском).
В первой статье указывается, что если частота дискретизации сигнала (fsp) связана с частотой модуляции (fo) следующим соотношением:

где p — целое число, то процесс вычисления фазы значительно упрощается.
Достаточно взять N выборок сигнала X[i], после чего разность фаз можно вычислить по следующим формулам:

Отмечу, что оба вышеуказанных метода часто применяются вместе — низкочастотные сигналы подаются напрямую на АЦП, высокочастотные переносятся в область более низких частот гетеродинным мотодом, и также подаются на АЦП.

Именно второй вариант фазометра, с использованием частоты модуляции 10МГц я и решил реализовать в своем макете дальномера.

Практика

Структурная схема моего дальномера:


Фактически, вся конструкция состоит из 3 частей — отладочной платы с микроконтроллером, усилителя сигнала лазера с самим лазером, и фотоприемника с усилителем и фильтром.
В вышеописанной теории предполагалось, что излучение лазера модулируется синусоидальным сигналом. Сформировать такой сигнал частотой 10Мгц с использованием контроллера непросто, поэтому в своей конструкции я подаю на лазер меандр частотой 10МГц. После усиления сигнала с фотоприемника от полученного сигнала отсекаются лишние гармоники полосовым LC-фильтром, настроенным на частоту 10МГц, в результате чего на выходе фильтра возникает сигнал, очень близкий к синусоидальному.

Схема аналоговой части (усилителя лазера и приемной части):

Схема была взята из проекта лазерной связи Ronja, описание на русском. В этом проекте как раз реализована передача данных со скоростью 10Mbit, что соответствует выбранной частоте модуляции.
Как видно из схемы — усилитель мощности для лазера простейший, собран на микросхеме 74HC04 (содержит 6 инверторов). Включение микросхемы не совсем корректное, но оно работает. Ток через лазер ограничивается резисторами (тоже не самое лучшее решение). Напряжение питания 5В для усилителя берется с отладочной платы.
Для того, чтобы сигнал с усилителя не наводился на остальную часть схемы, корпус усилителя сделан металлическим, все провода экранированы.
Сам лазер (красного цвета) взят из пишущего DVD-привода, его мощность можно установить достаточно высокой, и он гарантированно будет работать на частоте 10МГц.

Приемник состоит из фотодиода и усилителя, собранного на полевом транзисторе и микросхеме-высокоскоростном усилителе. Так как с увеличением расстояния освещенность фотодиода сильно падает, то усиление должно быть достаточно большим (в этой схеме оно примерно равно 4000). Кроме того, с ростом частоты заметно падает сигнал на выходе фотодиода (сказывается его емкость). Отмечу, что усилитель в данной конструкции — важнейшая и наиболее капризная часть. Как оказалось, его усиления явно не хватает. Изначально я предполагал, что коэффициент усиления можно будет менять (чтобы ослаблять сигнал при его слишком большой величине), используемая схема позволяет это делать, меняя напряжение на втором затворе транзистора. Однако оказалось, что при изменении усиления достаточно сильно изменяется вносимый усилителем сдвиг фаз, что ухудшает точность измерения расстояния, так что пришлось установить коэффициент усиления на максимум, подавая на затвор транзистора напряжение 3В с батарейки.
Приемнику для работы требуется напряжение 12В, так что для его питания приходится использовать отдельный блок питания.
Усилитель очень чувствителен к внешним наводкам, так что он тоже должен быть экранированным. Я взял готовый корпус от нерабочего оптического датчика, и разместил усилитель в нем (белая полоска — фольга для дополнительного экранирования фотодиода):

Отмечу, что наводка сигнала от лазера на приемник довольно сильно ухудшает точность измерения разности фаз, так что нужно контролировать, чтобы такая наводка отсутствовала.

LC-фильтр, используемый в дальномере — взят от приемника. Так как фильтр отсекает постоянную составляющую сигнала, а АЦП отрицательные сигналы не воспринимает, то ее приходится добавлять при помощи резисторного делителя R15, R16. Постоянное напряжение, подаваемое на делитель, берется c отладочной платы (VCC).

Отладочная плата — STM32F4-DISCOVERY. Ее выбрал потому, что для формирования двух достаточно различающихся частот нужен генератор достаточно высокой частоты (PLL STM32F4 может давать частоты больше 100МГц).
В формуле, связывающей частоту модуляции и дискретизации, коэффициент «p» я принял равным 6, так что при частоте модуляции 10МГц частота дискретизации должна быть 1.6МГц.

Для формирования частоты 10МГц используется таймер TIM2, работающий в режиме формирования ШИМ сигнала. При системной частоте 160МГц его период — 16 «тиков».
АЦП получает запросы на запуск от таймера TIM2. Для формирования частоты 1.6МГц его период — 100 «тиков». Все данные от АЦП при помощи DMA сохраняются в массив, размер которого должен быть равен двойке в N степени. Оба таймера, АЦП и DMA запускаются один раз при включении и больше уже не отключаются. Таким образом, так как таймеры тактируются от одного источника, а одному периоду измеряемого сигнала соответствуют четыре выборки данных, получается, что в массив всегда попадет целое число периодов сигнала.
Так как останавливать DMA не желательно (это упрощает управление захватом данных), при заполнении первой половины массива генерируется прерывание. Обнаружив, что половина массива заполнена, контроллер копирует ее содержимое в другой массив (в целях упрощения программы вторая половина основного массива при этом не используется). После этого полученные данные обрабатываются — вычисляется средняя амплитуда и фаза сигнала, проводится пересчет фазового сдвига в расстояние.
Полученные величины выводятся на ЖК индикатор от кассового аппарата, также подключенный к отладочной плате.

Дальномер должен знать где находится начало отсчета. Для его калибровки при включении на «нулевом» расстоянии от дальномера устанавливается объект, после чего на отладочной плате нужно нажать кнопку, при этом измеренное значение дальности записывается в память, после чего это значение будет вычитаться из измеренной дальномером дальности.

Как я уже отмечал выше, реализовать автоматическое управление усилением не удалось. При этом изменение амплитуды принятого сигнала приводит к изменению фазовых сдвигов в усилителе, и следовательно, к дополнительным ошибкам.
Поэтому мне пришлось регулировать освещенность фотодиода при помощи механической заслонки, поворачиваемой сервоприводом — при слишком большой освещенности заслонка перекрывает световой поток. ШИМ сигнал для управления приводом формируется таймером TIM3.

Про оптику. Без нее дальномер невозможен. Ее конструкция хорошо видна на фотографиях ниже. Лазер находится внутри пластиковой трубки, установленной вертикально. В нее вставлена небольшая втулка с зеркальной призмой. Втулку можно поворачивать, поднимать и опускать, перемещая таким образом луч лазера. Так как я догадывался, что усиления не хватит, то для приема сигнала использовал крупную линзу Френеля.
Так так лазер, линза и фотодиод установлены соосно, то на близких расстояниях лазер закрывает от фотодиода собственный луч. Для компенсации этого эффекта я установил вторую линзу (лупа с оправой), хотя полностью эффект не устраняется, поэтому максимальный сигнал наблюдается на расстоянии примерно 50-70 см от лазера.

А вот и фотографии получившейся конструкции:

На индикаторе первое число — амплитуда в единицах АЦП, второе число — расстояние в сантиметрах от края доски.

Видео работы дальномера:

Дальность работы у получившегося дальномера вышла достаточно небольшая: 1,5-2 м в зависимости от коэффициента отражения объекта.
Для того, чтобы увеличить дальность, можно использовать специальный отражатель, на который нужно будет направлять луч лазера.
Для экспериментов я сделал линзовый отражатель, состоящий из линзы, в фокусе которой расположена матовая бумага. Такая конструкция отражает свет в ту же точку, откуда он был выпущен, правда, диаметр луча при этом увеличивается.
Фотография отражателя:

Использование отражателя:

Как видно, расстояние до отражателя — 6.4 метра (в реальности было примерно 6.3). Сигнал при этом возрастает настолько, что его приходится ослаблять, направляя луч лазера на край отражателя.

Точность получившегося дальномера — 1-2 сантиметра, что соответствует точности измерения сдвига фаз — 0,2-0,5 градуса. При этом, для достижения такой точности, данные приходится слишком долго усреднять — на одно измерение уходит 0.5 сек. Возможно, это связано с использованием PLL для формирования сигналов — у него довольно большой джиттер. Хотя я считаю, что для самодельного макета, аналоговая часть которого сделана довольно коряво, в котором присутствуют достаточно длинные провода, даже такая точность — довольно неплохо.
Отмечу, что я не смог найти в Интернете ни одного существующего проекта фазового дальномера (хотя бы со схемой конструкции), что и послужило причиной написать эту статью.

Программа контроллера: ссылка

Автор: iliasam

Источник

Строительные лазерные дальномеры (рулетки): виды, функционал, характеристики


Если в распоряжении строителя есть точный и компактный прибор - дальномер цифровой, выполнение измерительных манипуляций занимает несколько секунд. При этом точность полученных данных будет 100%. Современные устройства подобного типа имеют дополнительные функции - позволяют в полевых условиях произвести необходимые замеры и расчеты, выполнить вычисления, переслать данные на планшет или телефон. В продаже имеется большой ассортимент приборов, которые различаются по своей функциональности и характеристикам.

Что такое дальномер и как он работает

Лазерные линейки – оптические устройства, позволяющие быстро измерить расстояние до объекта. Цифровой дальномер работает по принципу генерации светового импульса и анализа периода их отражения от противоположной поверхности. После того, как устройство получает данные, рассчитывается дистанция, которую преодолел луч лазера.Принцип действия лазерного дальномера
Если человек занимается строительством или монтажными работами, то лучше купить профессиональный лазерный дальномер со всеми необходимыми опциями по цене от производителя. С лазерными дальномерами работать намного проще, он не требует специальных навыков от оператора и может самостоятельно вывести вычисления на экран прибора.

Виды лазерных дальномеров

Существует две подкатегории дальномеров, различные по принципу работы:
Активные – объектив направляется на точку, и производится звуковой либо световой луч. Достигнув противоположной поверхности он отражается. Электронный дальномер улавливает волну и самостоятельно рассчитывает дистанцию на основе временного промежутка, который был потрачен на передвижение сигнала.
Пассивные – работают по геометрическим законам и не посылают никаких сигналов. Измерение расстояний основано на определении высоты h равнобедренного треугольника ABC, например, по определенной заранее стороне AB = l (базе) и противоположному острому углу b. При небольших углах b – формула h = l/ b (2.1). При этом первая величина является постоянной, а вторая переменной.Дальномеры активного типа Пассивные дальномеры
К активным приборам относится электронная рулетка дальномер – они делятся на два вида, которые различны по принципу осуществления замеров.

Импульсные

Прибор генерирует луч, который отражаясь, попадает на детектор. Расстояние до объекта рассчитывается по следующей формуле: время прохождение луча умножается на скорость света и делят на 2.
Дальнометрия, как и гидролокация работает по трем принципам:
  • Первый принцип – формируются электромагнитные волны оптического диапазона, которые отражаются, если на пути встречается какое-либо препятствие. Объект обнаруживается благодаря контрасту падающего излучение от фона и объекта.
  • Второй принцип – импульсный лазерный дальномер работает на основе оптической локации, которая использует направленное излучение. Расстояние до объекта определяется путем направления энергии в область его предполагаемого нахождения. Чем тоньше пучок энергии, тем точнее будет рассчитано направление.
  • Третий принцип – использование электромагнитных колебаний, которые излучаются с неизменной скоростью. Удаленность объекта, определяется, посредством длинны распространения волн определенной траектории. Особенность данного метода заключается в том, что для расчета расстояния используются короткие импульсы – строительный лазерный дальномер обладает этими функциями, что делает его востребованным у профессионалов.
Импульсный дальномер (оптика)

Фазовые

Данный тип измерительных лазерных приборов основан на сравнении фаз отправленного и возвращенного сигнала. Лазерный длиномер отличается не только доступной стоимостью, но и повышенной точностью замеров. Большинство ручных строительных измерительных устройств являются фазовыми.Фазовый дальномер
Стоит отметить, что такие дальномеры могут выдавать ошибку на долю модуляции длины фазы, поэтому они более точные по сравнению с импульсными приборами. А за счет того, что у устройства нет сверхточного таймера его стоимость доступна широкому кругу потребителей. Однако дальность работы зависит от мощности, которая необходима для длительной подсветки.Схема работы фазового дальномера
Мощностью луча управляет ручной дальномер, при этом не изменяя длину волны. Моделирующий сигнал не превышает частоты 500 МГц. Если говорить простым языком, то из устройства отправляется сигнал в одной фазе, а возвращается в другой.

Характеристики устройств

При применении измерительного устройства в помещении, оно может снимать различные показатели: от стены к стене либо от потолка до пола, он имеет следующие характеристики:
  1. Измерительный диапазон – 0.05-60 или 0.05-200 м. в зависимости от модельного ряда, последнее значение имеют новые современные устройства.
  2. Погрешность зависит от класса модели. Например, точность простого бытового дальномера составляет ±2 мм, а профессионального ± 0.5 мм.
  3. Вес, в зависимости от конкретной модели может быть от 0.1 до 0.3 кг.
  4. Мощность и длина луча- обычно она достигает 635-650 нанометров, при мощности — 1 мВт. этот лазер относится ко 2 классу и используется практически во всех приборах бытового назначения. Стоит такая аппаратура недорого.  Лучи с меньшей мощностью, чем 1 мВт относятся к 1 классу и применяются в профессиональных лазерных рулетках и относятся к более высокому ценовому сегменту.
Технические характеристики бюджетного дальномера Характеристики недорогого профессионального дальномера
Помимо этого, портативный дальномер имеет дополнительные свойства:
Кроме простого замера длины, базируемого на импульсном излучении и приема отражения луча от противоположной плоскости, он может осуществлять измерения, построенные на геометрических вычислениях.
Может определять площадь здания с помощью аксиомы Пифагора, даже если помещение не поддается прямым замерам.
Некоторые модели способны измерить высоту объекта по двум параметрам, сделанным из 1 точки.
Большинство измерительных приборов могут рассчитывать объем объекта по результатам 3-х измерений: длины, ширины и высоты.
Есть возможность выполнить промеры из нескольких позиций: измерить ширину дверной конструкции от задней стенки устройства, определение от кромки опорного штифта, при определении параметров от угла до труднодоступных объектов.
Некоторые лазерные рулетки производят вычитание либо сложение результатов замеров. Они могут функционировать в режиме дискретных и непрерывных измерений. При этом устройство может перемещать луч приближать и удалять его пока не найдет нужного расстояния.

Дополнительные возможности

У каждого устройства есть определенные опции, самое большее их количество имеет профессиональный лазерный дальномер:
Измерение площади и объема – дальномер способен вычислить эти параметры по различным формулам. Часто для этого достаточно сделать замеры всего с двух точек, устройство самостоятельно делает расчет и выводит результат на дисплей.
  • Функция маляра – применяется для точного расчета отделочного материала. Замеряют длину всех стен в комнате и высоту – прибор выдает точное значение, которое потом применяется для расчетов.
  • Максимальное/минимальное расстояние – лазерный дальномер с визиром может точно определить данные параметры, при этом 1 значение целесообразно при измерении диагонали, а 2 – при высчитывании перпендикуляра относительно стены в помещении.
  • Оптический визир – это дополнение, которое позволяет видеть точку луча, направленного на поверхность. Может быть выполнен в виде цифрового дисплея.
  • Функции измерения трапеции – дальномер сам рассчитает длину одной стороны, если предварительно промерить три стороны, которые расположены под прямым углом по отношению друг к другу. Результат выводится на дисплей.
  • Треккинг – программа, позволяющая выполнять расчеты во время движения устройства.
  • Угломер – прибор, который способен определить угол наклона. Функция необходима, если приходится часто работать с различными наклонными поверхностями, например при обустройстве перил лестниц.
Возможности измерения лазерным дальномером Leica
Есть еще несколько особенностей, о которых стоит упомянуть, они скорее конструкционные. Современные профессиональные устройства позволяют определить точку отсчета. Можно отрегулировать аппаратуру на работу от верхней/нижней части корпуса, складной стойки или от разъема штифта. Отлично подходит для измерения диагонали.
Также стоит отметить, такое устройство, как лазерный дальномер с блютузом – это аппарат, который можно использовать со специальными программами. Им управляют с планшета или телефона удаленно, и составлять полный план помещения. Кроме этого числовые значения можно добавлять на фотографии объекта и составлять чертежи.Передача данных с дальномера на планшет по Bluetouch
Лазерные дальномеры помимо функционала, обладают большим перечнем дополнительных опций, которые используют в различных строительных сферах. Выбрать устройство по своим требованиям на рынке не составит труда. Покупая лазерный дальномер обратите внимание на функциональность аппарата, его дополнительные возможности, мощность аккумулятора и процессора. Покупая лазерную линейку для дома, можно остановиться на недорогих бытовых моделях с минимальным набором опций. Профессиональным строителям, которые часто применяют в своей работе измерительные приборы, лучше купить современный дальномер с максимальной функциональностью.

Сохраните эту страницу в своей соц. сети и вернитесь к ней в любое время.

RP Photonics Encyclopedia - лазерные дальномеры, времяпролетный метод, фазовый сдвиг, дальность, лазерная безопасность, приложения

Энциклопедия> буква L> лазерные дальномеры

можно найти в Руководстве покупателя RP Photonics. Среди них:

Найдите более подробную информацию о поставщиках в конце этой статьи энциклопедии или посетите наш

Вас еще нет в списке? Получите свою заявку!

Определение: устройства для измерения расстояний до объектов с помощью лазеров

Немецкий язык: Laser-Entfernungsmesser

Категория: оптическая метрология

Как цитировать статью; предложить дополнительную литературу

Автор: Dr.Rüdiger Paschotta

Лазерные дальномеры - это устройства, содержащие лазер, с помощью которого можно измерить расстояние до объекта. Обычно такое устройство работает либо с прямым времяпролетным методом, либо с методом фазового сдвига. Оба метода описаны ниже. О других методах измерения расстояний с помощью лазеров см. Статью об измерении расстояний с помощью лазеров.

Разработаны разные устройства. Некоторые могут измерять расстояния до объектов в несколько километров, в то время как другие предназначены для гораздо меньших расстояний. E.г. внутри здания. Часто полученное расстояние до объекта отображается на цифровом дисплее.

По сравнению с ультразвуковыми или радио- и микроволновыми устройствами (радаром), основное преимущество лазерных методов измерения расстояния состоит в том, что лазерный свет имеет гораздо меньшую длину волны, что позволяет излучать гораздо более концентрированный пробный луч и, таким образом, достигать более высокого поперечного сечения. Пространственное разрешение.

Дальномер часто содержит смотровое устройство для точного определения цели.

Лазерные дальномеры часто содержат смотровые устройства, позволяющие пользователю точно направить лазерный луч на интересующий объект, просто ориентируя устройство так, чтобы интересующий объект появлялся в центре просматриваемого изображения, отмеченный перекрестием.(Измеренное расстояние может отображаться на том же устройстве просмотра.) В других случаях видимый лазерный луч (от измерительного лазера или, возможно, от отдельной встроенной лазерной указки) можно увидеть на не слишком удаленном объекте для проверки целевого положения.

Помимо лазера, фотодетектора и оптики, лазерный дальномер содержит электронику, обычно включающую микропроцессор, для управления лазером, расчета и отображения измеренного расстояния, контроля и зарядки аккумулятора и т. Д.

Прямые измерения времени пролета

Самый простой принцип измерения - послать короткий лазерный импульс от устройства к интересующему объекту и контролировать время до тех пор, пока отраженный или рассеянный свет не будет обнаружен с помощью достаточно быстрого фотодетектора. Расстояние можно просто рассчитать как половину измеренного времени прохождения туда и обратно, деленную на скорость света.

Сочетания высокой чувствительности и высокого временного разрешения фотоприемника добиться непросто.

Очевидно, что достижимое пространственное разрешение ограничено длительностью импульса и / или скоростью фотодетектора. Часто используются импульсы от лазера с модуляцией добротности, имеющие длительность несколько наносекунд, а иногда даже менее 1 нс, которые могут быть получены от особенно компактных лазеров, например монолитные микрочип-лазеры с пассивной модуляцией добротности. Быстрый фотодиод может предложить временное разрешение того же порядка, хотя этого нелегко достичь для очень низких принимаемых оптических мощностей, как результат для больших расстояний наблюдения, особенно когда необходимо использовать свет от диффузного рассеяния.Обратите внимание, что энергия принятого оптического импульса пропорциональна обратному квадрату расстояния наблюдения до тех пор, пока расходимостью выходящего луча можно пренебречь; в противном случае он распадается еще быстрее с увеличением расстояния.

На больших расстояниях расходимость луча может привести к значительному увеличению размера пятна на объекте, а атмосферные искажения могут усугубить эту проблему. В частности, для небольших объектов увеличение размера пятна на объекте может ухудшить мощность принимаемого сигнала, и могут возникнуть помехи из-за света, рассеянного на соседних объектах.

Могут быть предприняты различные меры для улучшения мощности принимаемого сигнала и отношения сигнал / шум, так что возможны измерения на больших расстояниях:

Для оптимизации дальности действия дальномера можно принять ряд мер.
  • Очевидно, может помочь высокая энергия импульса лазера. Однако ограничения могут возникать не только из-за использования лазерной технологии, но и из-за аспекта безопасности глаз - особенно для лазеров ближнего инфракрасного диапазона.
  • Расходимость луча можно уменьшить, используя телескоп для увеличения радиуса луча на выходной апертуре.Тот же телескоп можно использовать для сбора большего количества света от объекта. Однако такой подход может быть ограничен необходимой компактностью и малым весом устройства или стоимостью телескопа с большой апертурой.
  • С помощью точно отрегулированного зеркала или своего рода ретрорефлектора можно легко получить гораздо более сильные сигналы. Этот метод широко использовался, например, с ретрорефлекторами, размещенными на Луне во время миссии Аполлона. Однако во многих приложениях требуется работа с диффузно рассеивающими объектами.
  • Можно использовать особо чувствительный фотоприемник, например лавинный фотодиод.
  • Оптический полосовой фильтр позволяет очень эффективно удалять помехи на других оптических частотах.
  • Кроме того, электронная обработка сигналов может существенно помочь. Можно, например, получать данные от нескольких лазерных импульсов и улучшать отношение сигнал / шум с помощью методов усреднения.

Для быстрого обновления результатов измерений или для целей усреднения можно использовать обычную последовательность импульсов с определенной частотой следования импульсов.Для высоких частот повторения это создает неоднозначность диапазона; устройство должно определить, какому отправленному импульсу принадлежит полученный импульс. Для решения этой проблемы могут использоваться переменные частоты повторения или пачки импульсов.

Лазерные дальномеры

также могут справляться с дополнительными проблемами, такими как ложные сигналы от небольших объектов, летящих по воздуху (например, листья), или попытки создания помех или ослепления (в военных приложениях).

Метод многочастотного фазового сдвига

Вместо использования лазерных импульсов можно излучать свет с высокочастотной синусоидальной модуляцией интенсивности.Это может быть получено с помощью лазера непрерывного действия, выходной луч которого проходит через модулятор интенсивности, генерируя сильную синусоидальную модуляцию интенсивности на высокой частоте. В качестве альтернативы можно напрямую модулировать лазер, например через управляющий ток лазерного диода. Затем фотодетектор также получит сигнал с этой модуляцией, и относительный фазовый сдвиг между двумя сигналами модуляции зависит от расстояния до объекта.

Для фиксированной частоты модуляции f существует неоднозначность измерения: если расстояние до объекта изменяется на кратное целое число c / (2 f ), фаза сигнала детектора изменяется на кратное целое число 2π, т.е.е., по сути, совсем нет. Эту неоднозначность можно устранить, выполнив измерения на нескольких разных частотах и ​​комбинируя результаты, обычно с помощью подходящего программного обеспечения, работающего на микропроцессоре. Этот принцип хорошо работает, особенно если требования к максимальному расстоянию до объекта и пространственному разрешению не слишком строгие.

Проблемы обнаружения слабых сигналов для больших расстояний до объектов в принципе аналогичны задачам для прямых измерений времени пролета, но можно использовать синхронный усилитель для обнаружения модуляции с сильным подавлением случайных шумовых воздействий.В целом, обнаружение становится значительно проще, чем при использовании прямого метода времени пролета. Поэтому большинство портативных лазерных дальномеров для умеренных расстояний до объекта работают на основе метода фазового сдвига.

Дополнительные функции

Некоторые лазерные дальномеры имеют дополнительные функции, которые могут быть актуальны для определенных приложений:

  • Расширенные устройства просмотра, возможно, с переменным увеличением, упрощают идентификацию и точное наведение на определенные объекты.
  • Помимо определения расстояния, некоторые лазерные дальномеры могут измерять относительную скорость между объектом и наблюдателем, обнаруживая сдвиги оптической частоты, вызванные эффектом Доплера. Обычно это требует использования одночастотного лазерного источника и дополнительных средств для обнаружения оптических гетеродинов и обработки сигналов.
  • Некоторые устройства предлагают вычисление площадей или объемов на нескольких измеренных расстояниях.
  • Возможно сохранить несколько результатов измерений и / или передать их на другие устройства, например.г. через беспроводное соединение с ноутбуком или планшетом.

Аспекты лазерной безопасности

Определение дальности с помощью лазеров может вызвать серьезные проблемы с безопасностью лазера, особенно когда используются интенсивные импульсы лазеров с модуляцией добротности; это часто требуется для больших расстояний обнаружения, чтобы не только получить обнаруживаемое количество отраженного света, но и избежать доминирующего влияния окружающего света. Однако тогда, возможно, придется принять неудобные дополнительные меры для обеспечения безопасности, особенно для глаз человека.

Часто пытаются сконструировать устройства для работы с классом лазерной безопасности I, так что не требуются специальные дополнительные меры безопасности при работе с лазером. Это, однако, может серьезно ограничить оптическую мощность, которая может быть отправлена ​​к цели, и, следовательно, возможности обнаружения.

Такие компромиссы могут быть смягчены применением безопасных для глаз лазеров, например в спектральной области 1,5 мкм, где можно безопасно использовать гораздо большую оптическую мощность, чем, например, в области 1 мкм. Однако в этом случае выбор лазеров и фотодетекторов (и их производительность) существенно ограничивается, а стоимость системы может быть значительно выше.

Различные проблемы

Как упоминалось выше, расходимость луча может стать серьезной проблемой для больших расстояний до объектов. Тогда желательны большой оптический телескоп и лазер с высоким качеством луча.

Как и все другие методы измерения с использованием лазеров, на лазерные измерения расстояния может влиять лазерный шум, хотя шум обнаружения обычно является доминирующей проблемой. Другие проблемы, связанные с шумом, могут возникать из-за рассеянного света и лазерных спеклов.

Мишени могут иметь самые разные отражательные и рассеивающие свойства.Проблемы могут возникнуть из-за очень слабого отражения или зеркального отражения. В последнем случае большая часть падающего света может отражаться в направлениях, которые не используются для обнаружения.

Применение лазерных дальномеров

Лазерные дальномеры имеют множество различных применений:

  • Существуют военные устройства, которые часто позволяют проводить измерения на расстояниях в несколько километров или даже десятков километров, например в разведывательных целях.Они могут использовать достаточно интенсивные лазерные импульсы с энергией в несколько миллиджоулей, которые довольно опасны для человеческого глаза (→ лазерная безопасность ) даже при использовании «безопасной для глаз» длины волны.
  • Используются аналогичные устройства, обычно отслеживающие расстояния, например для геодезических измерений и на крупных строительных площадках.
  • Есть устройства для использования в лесном хозяйстве, например, для инвентаризации леса. Они могут содержать специальные оптические фильтры для подавления вредного воздействия листьев на измерения.
  • Дальномеры разных типов используются в различных производственных процессах и в гражданском строительстве.
  • Существуют дешевые портативные дальномеры для использования внутри помещений, которые подходят только для довольно ограниченных расстояний, но с ошибками расстояния, например всего несколько миллиметров. Их можно использовать, например, для быстрого измерения размеров комнат, требующего только одного человека. Они могут предоставлять дополнительные функции, например расчет площадей или объемов на нескольких измеренных расстояниях.
  • Некоторые виды спорта (например, гольф) и охота требуют измерения расстояния, которое может быть выполнено с помощью относительно недорогих потребительских дальномеров.

Поставщики

Справочник покупателя RP Photonics содержит информацию о 21 поставщике лазерных дальномеров. Среди них:

TOPTICA Photonics

Лазерные дальномеры можно использовать для отслеживания или измерения расстояний или длин объектов. Они также могут определять местоположение на больших расстояниях, например.г. несколько километров, физически не касаясь наблюдаемого объекта. Лазерные дальномеры регулярно используются в геодезии, спорте, охоте или в армии. Обычно расстояния измеряются с точностью до миллиметра, а измеряемый объект может даже находиться в движении. Кроме того, возможны измерения на естественных поверхностях с низким коэффициентом отражения.

Beam smart WS - лучший выбор, если вам нужна компактная и узкая диодная лазерная система OEM. Это версия iBeam smart со стабилизированной длиной волны и надежными диодами со стабилизированной длиной волны.В сочетании с гибкой микропроцессорной электроникой iBeam smart это упрощает интеграцию системы.

G&H

Light-MiLES был исследовательским проектом, финансируемым Innovate UK (ранее Советом по технологической стратегии), который проводился с декабря 2012 года по май 2015 года. Цели проекта заключались в разработке нового лазерного передатчика и его интеграции с массивом изображений для получения активного датчик изображения с лазерной подсветкой. Консорциум проекта возглавила компания Thales Optronics, участниками которой стали G&H, Glass Technology Services и Университет Лидса.Задача G&H заключалась в том, чтобы предоставить подходящее решение для фотонной упаковки для этого требовательного приложения.

В рамках проекта Light-MiLES был разработан новый безопасный для глаз лазерный передатчик, сочетающий характеристики твердотельного лазера с корпусом и форм-фактором диодного лазерного устройства. Источник хорошо подходит для лазерных дальномеров дальнего действия (LRF) или для интеграции в многоплатформенные сенсорные системы, такие как переносные локаторы цели или бортовые подвесы. Все эти приложения требуют сверхкомпактных, недорогих и эффективных лазерных передатчиков.

Вопросы и комментарии пользователей

Здесь вы можете оставлять вопросы и комментарии. Если они будут приняты автором, они появятся над этим абзацем вместе с ответом автора. Автор принимает решение о приеме на основании определенных критериев. По сути, вопрос должен представлять достаточно широкий интерес.

Пожалуйста, не вводите здесь личные данные; в противном случае мы бы скоро удалили его. (См. Также нашу декларацию о конфиденциальности.) Если вы хотите получить личный отзыв или консультацию от автора, свяжитесь с ним e.г. по электронной почте.

Отправляя информацию, вы даете свое согласие на возможную публикацию ваших материалов на нашем веб-сайте в соответствии с нашими правилами. (Если позже вы откажетесь от своего согласия, мы удалим эти данные.) Поскольку ваши материалы сначала рассматриваются автором, они могут быть опубликованы с некоторой задержкой.

См. Также: измерения расстояний с помощью лазеров, времяпролетные измерения
и другие статьи в категории оптическая метрология

Если вам понравилась эта страница, поделитесь ссылкой со своими друзьями и коллегами, e.г. через соцсети:

Эти кнопки общего доступа реализованы с учетом конфиденциальности!

Код для ссылок на других сайтах

Если вы хотите разместить ссылку на эту статью на каком-либо другом ресурсе (например, на своем веб-сайте, в социальных сетях, дискуссионном форуме, Википедии), вы можете получить здесь необходимый код.

HTML-ссылка на эту статью:

   
Статья о лазерных дальномерах

в
Энциклопедия RP Photonics

С изображением предварительного просмотра (см. Рамку чуть выше):

   
alt = "article">

Для Википедии, например в разделе «== Внешние ссылки ==»:

  * [https://www.rp-photonics.com/laser_rangefinders.html 
статья «Лазерные дальномеры» в энциклопедии RP Photonics]
.

Лучшие лазерные дальномеры 2020 года

Лучшие лазерные дальномеры - полезные устройства для измерения расстояния между вашим текущим положением и целью. Если вы играете в гольф, просто достаньте дальномер из кармана, наведите его на поле или флаг, по которому хотите ударить, и подождите, пока устройство рассчитает расстояние для вас, что позволит вам выбрать правильную клюшку и повысить точность и эффективность вашего последующего выстрела. Расстояние измеряется устройством, отражающим свет от объекта, на который он направлен.Но лазерный дальномер может найти и другое применение - в строительстве, недвижимости и т. Д.

Как и в случае с любым другим электронным устройством, на рынке доступно несколько марок лазерных дальномеров. К ним относятся знакомые имена, такие как Nikon и Bushnell, а также менее знакомые импортные товары, которые потенциально могут предложить еще большее соотношение цены и качества. Ниже мы собираем шесть лучших лазерных дальномеров, которые вы можете купить прямо сейчас, чтобы помочь вам принять решение о покупке.

Главные соображения при покупке должны включать поиск лучшего лазерного дальномера, который будет компактным, портативным и легким - так что вы не будете возражать потенциально носить его с собой в течение нескольких часов - наряду, конечно же, выбрать тот, который является точным и точным.

Вы также можете подумать о времени автономной работы, убедившись, что предлагаемая мощность длится весь период, плюс что устройство имеет внешний корпус, который, возможно, является водонепроницаемым, чтобы дождь не мешал игре.

Помимо простоты использования этого дальномера, вам также понадобится ваш личный бюджет, который можно добавить к покупке. Более дорогие модели предлагают больший диапазон и большую сложность функций, но это может усложнить их. Какой бы вариант вы ни выбрали, в конечном итоге точность будет улучшена по сравнению с отсутствием лазерного дальномера.

Итак, читайте дальше, когда мы исследуем рынок и оценим лучший лазерный дальномер для вас.

Лучшие лазерные дальномеры в 2021 году

(Изображение предоставлено Nikon)

1: Nikon Coolshot Pro Stabilized

Лучший профессиональный дальномер:

Диапазон измерений: от 7,5 до 1090 метров | Дисплей: Красный внутренний дисплей OLED | Время отклика измерения: 0,3 секунды | Стабилизация: Да | Увеличение: 6x | Удаление выходного зрачка: 18 мм | Размеры: 96x74x42 мм | Вес: 180 г (без аккумулятора) | Питание: CR2 литиевая батарея

Сверхбыстрые измерения расстояния

Внутренний дисплей для улучшенной четкости просмотра в любых условиях освещения

Лучшая из линейки Nikon требует премиальной цены

Хлипкий футляр

При этом один из самых дорогих лазерные дальномеры для игроков в гольф, это также один из наиболее точных и оптимизированных примеров.Например, он может рассчитывать наклон и отклонение, чтобы отображать скорректированное с учетом наклона руководство по расстоянию, определяющее, как далеко вы должны ударить мяч для гольфа, при этом имеет встроенный 6-кратный монокуляр. Яркость внутреннего OLED-дисплея, автоматически настраиваемая в зависимости от уровня внешней освещенности, также позволяет просматривать в самых разных условиях, при этом он утверждает, что позволяет точно определить меру за 0,3 секунды. Как следует из названия модели, флагманский лазерный дальномер Nikon оснащен встроенной системой подавления вибраций, которая обеспечивает более стабильное изображение в видоискателе - до 80% заявленного.Если у вас есть деньги, это вполне может быть единственным из таких измерительных устройств, которые вам когда-либо понадобятся.

(Изображение предоставлено Nikon)

2: Nikon Coolshot 20 GII

Диапазон измерения: 5–730 метров | Показать: Не указано | Время отклика измерения: 8 секунд | Стабилизация: Нет | Увеличение: 6x | Удаление выходного зрачка:: 16,7 мм | Размеры: 91x73x37 мм | Вес: 130 г (без аккумулятора) | Питание: CR2 литиевая батарея

Доступная

Сверхкомпактная опция

Известная торговая марка

Измерения медленнее, чем у более дорогих альтернатив

Сложнее получить стабильное изображение

Сложить много вещей в компактном корпусе, который Достаточно легкий, чтобы уместить его в ладони, включая очень приличный диапазон от пяти до 730 метров и монокуляр с 6-кратным увеличением с многослойным покрытием, это устройство с хорошим соотношением цены и качества для увлеченных любителей, желающих приобрести свой первый лазерный дальномер.Встроенный алгоритм приоритета первой цели считается достаточно сложным, чтобы определять ближайшую цель, даже если флагшток во время игры в гольф имеет отвлекающие друг друга деревья или здание позади него. Это может быть медленнее, чем более дорогие альтернативы, вынуждая пользователя удерживать кнопку питания до восьми секунд непрерывного измерения - и еще четырех, если первое измерение не удастся, - но длительное удаление выходного зрачка и регулировка диоптрии делают Nikon наименьшим доступным ' Coolshot достаточно удобен для использования тем, кто носит очки.

(Изображение предоставлено Bushnell)

3: Bushnell Tour V5 Shift

Лучший дальномер для игры в гольф легко справляется с труднопроходимыми склонами

Диапазон измерений: От 5 до 1300 ярдов / 5-1189 м | Дисплей: LCD | Время отклика измерения: Не указано | Стабилизация: Нет | Увеличение: 6x | Удаление выходного зрачка: 16 мм | Размеры: 4,5x1,5x3 дюйма / 99x40x68 мм | Вес: 8 унций / 295 г | Мощность: Литиевая батарея CR2

Точная и отзывчивая

Не водонепроницаемая

Хвастается тем, что она сочетает в себе 6-кратное увеличение с быстрой фокусировкой, обеспечивая точность до одного ярда.Его основной диапазон составляет от 5 до 1300 ярдов. Подобно альтернативному лазерному дальномеру Bushnell, указанному здесь, этот доступный и специально предназначенный для гольфа вариант оснащен механизмом толчка, который подтверждает пользователю, что он зафиксирован на штифте (при этом само устройство вибрирует), при этом утверждая, что он может перемещаться и помогают гольфистам компенсировать неровную наклонную поверхность. Переключатель на самом устройстве позволяет пользователю переключаться в или из указанного режима наклона. Конструкция может быть пластиковой, а не металлической, но если вам не нужны прочный внешний вид и гидроизоляция Pro XE, то эта более доступная по цене модель 2020 года должна помочь вам пробить эту дыру в одном!

(Изображение предоставлено Hawke)

4: Лазерный дальномер Hawke Pro 900

Лучший дальномер среднего диапазона

Дисплей: ЖК-дисплей | Время отклика измерения: Не указано | Стабилизация: Нет | Увеличение: 6x | Удаление выходного зрачка: 12 мм | Размеры: 99x40x68 мм | Вес: 180 г | Мощность: Литиевая батарея CR2

Легкая конструкция

Обеспечивает спокойствие пользователей благодаря определенной степени гидроизоляции

Удаление выходного зрачка короче, чем у некоторых конкурентов

Дольше на зуб, чем у некоторых новых моделей

Другой вариант лазерного дальномера от признанный специалист в области оптики - здесь многослойное покрытие, которое также удобно поместится в ладони.Этот удобный имеет шероховатую поверхность, поэтому он не выскользнет из вашей руки, обеспечивая при этом определенную степень гидроизоляции. Четыре пользовательских режима позволяют обнаруживать объекты на впечатляющих расстояниях до 900 метров, а результаты можно увидеть в видоискателе. Это: расстояние (измерение прямой линии до объекта), Beeline (кратчайшее расстояние до цели по горизонтали), высота (высота цели по отношению к видоискателю) и угол (вычисление угла проецирования от точки, в которой вы нацеливаетесь).Все это составляет довольно обширное предложение по цене.

(Изображение предоставлено: Bushnell)

5: Bushnell Pro XE

Лучший водонепроницаемый дальномер с прорезиненным корпусом

Диапазон измерений: От 5 до 1300 ярдов | Дисплей: LCD | Время отклика измерения: Не указано | Стабилизация: Нет | Размеры: 99x40x68 мм | Вес: 581 г | Питание: Литиевая батарея CR2

.

Лазерный дальномер и дальномер

Компания

First Sensor - один из ведущих мировых поставщиков сенсорных систем. На растущем рынке сенсорных систем First Sensor разрабатывает и производит индивидуальные решения для постоянно растущего числа приложений на целевых рынках промышленности, медицины и мобильной связи. Наша цель здесь - выявить, встретить и решить проблемы будущего с помощью наших инновационных сенсорных решений на ранней стадии.

Связи с инвесторами

Наша деятельность по связям с инвесторами направлена ​​на повышение международной известности First Sensor AG, а также на укрепление и расширение восприятия нашей доли как привлекательной для роста. Это означает, что мы сохраняем прозрачность, полноту и непрерывность нашего онлайн-общения, чтобы повысить ваше доверие к нашей доле.

Индивидуальные решения

На растущем рынке сенсорных систем First Sensor разрабатывает и производит сенсоры, электронику, модули и сложные системы для постоянно растущего числа приложений на промышленных, медицинских и мобильных целевых рынках.Как поставщик решений, компания предлагает комплексные услуги по разработке от первого проекта и подтверждения концепции до разработки прототипов и, наконец, серийного производства. First Sensor предлагает комплексный опыт разработки, современные упаковочные технологии и производственные мощности в чистых помещениях от 8 до 5 класса ISO.

Компетенции

На растущем рынке сенсорных систем First Sensor разрабатывает и производит сенсоры, электронику, модули и сложные системы для постоянно растущего числа приложений на промышленных, медицинских и мобильных целевых рынках.Как поставщик решений, компания предлагает комплексные услуги по разработке от первого проекта и подтверждения концепции до разработки прототипов и, наконец, серийного производства. First Sensor предлагает комплексный опыт разработки, современные упаковочные технологии и производственные мощности в чистых помещениях от 8 до 5 класса ISO.

Карьера

Инновации, совершенство, близость - это наши ценности, наши амбиции, наш драйв. Меньше - не вариант. Наши сенсорные решения олицетворяют технические инновации и экономический рост.По сути, они составляют основу для разработки и применения новых технологий практически во всех сферах жизни. Мы стремимся формировать это будущее вместе с вами.

.Военные лазерные дальномеры

| Safran Vectronix

Дальность и наблюдение в любых условиях

Наряду с интуитивно понятным управлением, которое делает все данные измерений - расстояние, местоположение цели и наблюдение - быстро доступными даже в стрессовых ситуациях, надежность и доступность важны для безопасности вооруженных сил. Лазерные дальномеры Safran Vectronix зарекомендовали себя в тысячах миссий по всему миру. В постоянном льду, влажных джунглях и в пылающей жаре, посреди грязи, пыли и песка они надежно выполняют свой долг.Они выполняют наше обещание: максимальная производительность и надежность при минимальных операциях. Благодаря сотрудничеству с нашими клиентами и их отзывам, мы можем постоянно делать наши продукты легче, прочнее и устойчивее. Поэтому неудивительно, что все больше и больше вооруженных сил делают их частью своего стандартного вооружения.

Для безопасных миссий по всему миру

Наряду со стратегическим планированием, опытными войсками и превосходными технологиями, за каждой военной миссией стоит специальная команда, которая все защищает.Safran Vectronix также предлагает соответствующую сервисную поддержку для нашего портфеля сложных оптических устройств. Неслучайно мы являемся лидером мирового рынка в области наблюдения и определения местоположения как для военных, так и для гражданских задач. Safran Vectronix сочетает инновационные решения с первоклассным качеством продукции, а также индивидуальное обслуживание и интегрированную логистическую поддержку (ILS) - на протяжении всего срока службы наших продуктов. Все это способствует повышению безопасности военных и гражданских миссий по всему миру.

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.