ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Как вычислить квадрат


Калькулятор для расчета площади

Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:

Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля). Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка.


Полезные калькуляторы Конвертер единиц площади | Конвертер единиц длины

Расчет площади прямоугольника

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади треугольника

Способ нахождения площади треугольника: По трем сторонамПо одной стороне и высоте, опущенной на эту сторонуПо двум сторонам и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади круга

Рассчитать площадь круга, если известен:

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади параллелограмма

Способ нахождения площади параллелограмма:
По основанию и высоте параллелограммаПо двум сторонам и углу между нимиПо двум диагоналям и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади правильного многоугольника

Многоугольник с числом сторон n и длиной стороны аМногоугольник с числом сторон n, вписанный в окружность радиуса RМногоугольник с числом сторон n, описанный вокруг окружности радиуса r

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади эллипса

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади сектора круга

Рассчитать площадь сектора круга, если известен:

r=

ммсммкмфутярддюйммиля

θ=

ммсммкмфутярддюйммиля

град.рад.

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади трапеции

Способ нахождения площади трапеции: По двум основаниям a,b и высоте hПо двум основаниям a,b и боковым сторонам c,d

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры.

Метрические единицы измерения площади:   
Квадратный метр, производная единица системы СИ 1 м2 = 1 са (сантиар)
Квадратный километр - 1 км2 = 1 000 000 м2
Гектар - 1 га = 10 000 м2
Ар (сотка) - 1 а = 100 м2 (сотка как правило применяется для измерения земельных участков и равна 100 м2 или 10м х 10м)
Квадратный дециметр, 100 дм2 = 1 м2;
Квадратный сантиметр, 10 000 см2 = 1 м2;
Квадратный миллиметр, 1 000 000 мм2 = 1 м2.

Данный онлайн-калькулятор удобен при расчете площадей помещений и земельных участков.

Вычислить квадратный корень из числа: примеры, расчеты, калькулятор


Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой — калькулятором корней. Она поможет:

  • найти квадратные или кубические корни из заданных чисел;
  • выполнить математическое действие с дробными степенями.

Как вычислять квадратный корень вручную —методом подбора находить подходящие значения. Рассмотрим, как это делать.

Что такое квадратный корень

Корень n степени натурального числа a — число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

Квадратным корнем из числа a будет число, квадрат которого равен a. Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

Проводим расчеты вручную

Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

Квадратные числа — числа, из которых можно извлечь корень без остатка. А множители — числа, которые при перемножении дают исходное число.

Например:

25, 36, 49 — квадратные числа, поскольку:


Получается, что квадратные множители — множители, которые являются квадратными числами.

Возьмем 784 и извлечем из него корень.

Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель — 4 x 4 = 16. Делим 784 на 16 получаем 49 — это тоже квадратное число 7 x 7 = 16.
Применим правило

Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

Ответ. 

 

2.Неделимое. Его нельзя разложить на квадратные множители.

Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

Раскладываем число 252 на квадратный и обычный множитель.
Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки. Подкоренное число — 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

Значит

между 2 и 4.

Оцениваем значение Вероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76~7.

Вычисляем корень

Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

При делении в столбик получается максимально точный ответ при извлечении корня.

Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

— целую часть справа налево;

— число после запятой слева направо.

Пример: 3459842,825694 → 3 45 98 42, 82 56 94

795,28 → 7 95, 28

Допускается, что вначале остается непарное число.

Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

Извлеките из этого числа корень — √n. Запишите полученный результат сверху справа, а квадрат этого числа — снизу справа.

У нас первая 7. Ближайшее квадратное число — 4. Оно меньше 7, а 4 = 

Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

Примечание: числа должны быть одинаковыми.

Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.
Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

Снесите следующую пару чисел и запишите возле полученной разницы слева.

Вычтите полученное справа произведение из числа слева.

Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение  прочерками, подбираем множители для него и так далее.

Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

Алгоритм действий

1. Введите желаемое количество знаков после запятой.

2. Укажите степень корня (если он больше 2).

3. Введите число, из которого планируете извлечь корень.

4. Нажмите кнопку «Решить».

Вычисление самых сложных математических действий с онлайн калькулятором станет простым! Экономьте время и проводите расчеты с CALCON.RU.

Как вычислить квадрат?

Квадрат числа - это результат математической операции, которая возводит это число во вторую степень, то есть однократно умножает это число на само себя. Обозначать такую операцию принято так: Z2, где Z - наше число, 2 - степень «квадрат». О том, как вычислить квадрат числа, расскажет наша статья.

Вычисляем квадрат

Если число простое и маленькое, то сделать это просто или в уме, или воспользовавшись таблицей умножения, которая нам всем хорошо известна. Например:

42 = 4х4 = 16; 72 = 7х7 = 49; 92 = 9х9 = 81.

Если число большое или «громадное», то можно воспользоваться или таблицей квадратов, которую все учили в школе, или калькулятором. Например:

122 = 12х12 = 144; 172 = 17х17 = 289; 1392 = 139х139 = 19321.

Также для получения необходимого результата по двум вышеприведенным примерам, можно умножить эти числа в столбик.

Для того чтобы получить квадрат любой дроби, необходимо:

  1. Перевести дробь (если дробь имеет целую часть или же она десятичная) в неправильную дробь. Если дробь правильная, то переводить ничего не нужно.
  2. Умножить знаменатель на знаменатель, а числитель на числитель дроби.

Например:

(3/2)2 = (3/2)х(3/2) = (3х3)/(2х2) = 9/4; (5/7)2 = (5/7)х(5/7) = (5х5)/(7х7) = 25/49; (14/17)2 = (14х14)/(17х17) = 196/289.

В любом из этих вариантов проще всего воспользоваться калькулятором. Для этого нужно:

  1. Набрать число на клавиатуре
  2. Нажать на кнопку со знаком «умножение»
  3. Нажать кнопку со знаком «равно»

Также всегда можно воспользоваться поисковыми системами в Интернете, такими как, например, Google. Для этого необходимо просто ввести соответствующий запрос в поле поисковика и получить уже готовый результат.

Например: чтобы вычислить квадрата числа 9,17 необходимо набрать в поисковой системе 9,17*9,17, или 9,17^2, или «9,17 в квадрате». В любом из этих вариантов поисковая система выдаст Вам правильный результат - 84,0889.

Теперь Вы знаете, как вычислить квадрат любого интересующего Вас числа, будь то целое число или дробь, большое оно или маленькое! 

Как посчитать квадратные метры комнаты (квадратуру)

При ремонте, покупке материалов нужно знать площадь помещений. Говорят еще «квадратура». Как посчитать площадь комнаты в квадратных метрах, что для этого нужно — будем рассматривать в статье. 

Содержание статьи

Немного теории

Как найти площадь различных фигур, проходили еще в начальной школе. Было это давно, так что «обновить» информацию может быть полезно. Будем рассматривать только то, что может иметь отношение к полу. Итак, начнем с самого простого — единиц измерения.

Чтобы посчитать площадь комнаты в квадратных метрах, нужен будет карандаш, рулетка и некоторый багаж знаний

Что такое 1 см² и 1 м²

Площадь любой фигуры измеряется в квадратных метрах или в квадратных сантиметрах. Обозначение см² или м², может встречаться написание кв.м, кв. см., кв. метры, кв. сантиметры и другие вариации.

Что такое один квадратный сантиметр

Один квадратный сантиметр — это площадь квадрата со стороной 1 см. Если нарисовать такой квадрат, стороны которого равны 1 см, то заштрихованная часть (на рисунке красным или синим) и будет один квадратный сантиметр. Соответственно, квадрат со стороной один метр — 1 м — имеет площадь один квадратный метр. Тот самый «квадрат площади». То есть, это квадратный участок пола (или стены) со стороной в один метр — 1 м².  В одном квадратном метре десять тысяч квадратных сантиметров: 1 м² = 10000 см².

Формулы

Это то, что касалось единиц измерения и их соответствия. Но наши помещения, слава богу, больше чем один квадратный метр. Как посчитать площадь комнаты? Сколько в ней квадратных метров? Обычно комната имеет форму прямоугольника, реже — квадрата. Значит, надо будет вспомнить формулы нахождения площади квадрата и прямоугольника.

При помощи очень простых формул, можно рассчитать площадь прямоугольника и квадрата

Надо длины сторон прямоугольника перемножить. Получим искомую площадь. Давайте потренируемся.

  1. Имеем прямоугольник со сторонами 80 см и 50 см. Перемножаем эти цифры: 80 * 50 = 4000 см². Это и будет его площадь.
  2. Стороны 322 см и 300 см. Получим: 322*300 = 96000 см².
  3. Есть квадрат со стороной 60 см. Его площадь — 60 * 60 = 3600 см².

В случае с квадратом длину стороны можно возвести в квадрат — получится одно и то же. Но можно не морочить голову. Проще помнить, что надо стороны умножить.

Простейший калкулятор для расчета площади прямоугольной комнаты.

Перевод квадратных сантиметров в квадратные метры

Когда имеем дело с сотнями сантиметров, удобнее и проще считать в метрах. Мы знаем, что в одном метре сто сантиметров. Давайте решим те же примеры, но переведем сантиметры в метры:

  1. 80 см = 0,8 м; 50 см = 0,5 м. Перемножаем 0,8*0,5 = 0,4 м². То есть, 0,4 квадратных метра.
  2. 322 см это 3,22 м; 300 см это 3 м. Теперь умножаем полученные цифры: 3,22 * 3 = 9,6 м².
  3. 60 см равны 0,6 м. Площадь квадрата с такой стороной 0,6*0,6 = 0,36 м².

Цифры получаются намного меньше, запомнить их проще. И если мы хотим посчитать площадь комнаты в квадратных метрах, ее размеры мы меряем в метрах, а не сантиметрах. Можно перевести квадратные сантиметры в квадратные метры. Как уже говорили, в одном квадратном метре содержится десять тысяч квадратных сантиметров.

Соотношение квадратных сантиметров и квадратных метров

Если же у вас есть площадь в квадратных сантиметрах, чтобы перевести ее в квадратные метры, цифру надо разделить на 10 000. Например:

  • 4000 см² / 10000 = 0,4 м²;
  • 96000 см² / 10000 = 9,6 м²;
  • 3600 см²/ 10000 = 0,36 м².

Как видите, все просто. Надо только запомнить основные положения и посчитать площадь комнаты в квадратных метрах будет совсем несложно. Нужно будет предварительно провести измерения, а потом заняться расчетами.

Как посчитать площадь комнаты в квадратных метрах

Рассчитать площадь комнаты, часто надо при закупке материалов для строительства или ремонта. Например, некоторые виды напольного покрытия продают на квадраты (то есть, на квадратные метры). Чтобы правильно рассчитать его количество, надо знать площадь пола (часто говорят квадратура комнаты, что по сути одно и то же).

Можно найти площадь комнаты зная длину и ширину

Измерения

Берем рулетку, листок бумаги, карандаш и калькулятор. На бумаге рисуем план комнаты. При помощи рулетки измеряем длины всех стен. Измерения проводим на уровне пола — если постройка старая, велика вероятность того, что стены «завалены» в ту или другую сторону. Тем более что определяем площадь пола, так что логичнее измерять вплотную к стенам, но мерную ленту тянуть по полу.

Схема комнаты с нанесенными измерениями

На схеме проставляем измерения. Лучше всего в метрах. Точность измерений — до сантиметра. Это понадобится при покупке материалов, которые продаются на погонные метры — линолеум, ковролин или другие рулонные покрытия. Чтобы посчитать площадь комнаты в квадратных метрах, тоже желательна такая точность. Хоть можно, конечно, и округлить. Но лучше это сделать уже получив результат.

Как высчитать квадратуру комнаты

Имея длину и ширину комнаты прямоугольной формы, цифры надо просто перемножить. На рисунке выше такая комната нарисована справа. Длинная стена равна 7 м, короткая — 4 метрам. Перемножаем 7*4 = 28 квадратных метров. Это и есть площадь этого помещения, пола. Другими словами, мы нашли квадратуру. Используя эту цифру, можно покупать напольное покрытие. Но надо иметь в виду, что требуется некоторый запас — на подгонку, подрезку. Чем сложнее схема укладки и чем больше фрагменты напольного покрытия, тем запас должен быть больше.

Часто комната не прямоугольная, а имеет более сложную форму. Чтобы посчитать площадь такой комнаты в квадратных метрах, ее разбивают на простые фигуры. Если удается — на прямоугольники или квадраты. Например, Г-образную комнату разбивают на два прямоугольника. Затем считают площадь каждого прямоугольника отдельно, потом их складывают.

Как найти площадь комнаты сложной формы
  • Считаем большой прямоугольник: 5 м * 4,35 м = 21,75 м².
  • Находим квадратуру маленького: 2,5 м * 2,65 м = 6,625 м².
  • Площадь пола в этом помещении равна сумме 21,75 м² + 6,625 м² = 28,375 м².

При покупке материалов, проще пользоваться округленными значениями. Чаще всего говорят, что в этом помещении 28,4 квадрата.

Если помещение имеет участок «срезанной» стены, как на рисунке ниже, проще всего дорисовать прямоугольник так, чтобы косая делила его на два треугольника. В этом случае снова-таки получаем Г-образную комнату. Как высчитать ее площадь уже знаем.

Получается, ищем площадь трех прямоугольников

А недостающий участок — это половина маленького прямоугольника. То есть, находим площадь этого маленького прямоугольника, делим ее пополам и прибавляем к размерам Г-образного участка.

Приведем пример расчета подставляя произвольные значения:

  • Большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Для простоты округлим до 3,38 м².
  • Средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м².  Снова округлим до 0,67 м².
  • Самый маленький прямоугольник (в нашем случае это будет квадрат): 0,57 м *0,57 м = 0,3249 м2, после округления имеем 0,33 м².
  • Чтобы найти общую площадь складываем квадратуру двух прямоугольников и добавляем половину площади последнего, самого маленького участка. 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Такая методика — разбиение на простые фигуры — самый удобный и простой метод. Всегда стоит стараться преобразовать сложную фигуру в набор простых. Правда, измерений может потребоваться больше.

Площадь квартиры

Так как ремонт — это «бедствие», которое периодически нас посещает, лучше сделать план всей квартиры с подробными замерами. На этом же плане проставьте площади каждого помещения. После того, как рассчитаете квадратуру всех комнат, сложите цифры и получите метраж квартиры.

Для плана лучше рассчитать метраж каждой комнаты

Один вариант может быть как на рисунке выше — для того, чтобы знать именно площади каждого помещения. Это потребуется для закупки материалов. Но нужен будет еще план, на котором будут все длины. Простенки, ширина окон, дверей и т.д. Это потребуется, например, для разработки схем укладки ламината, напольной плитки или других покрытий. Нужен будет такой план и при планировании теплого пола.

Есть, кстати, приложение-калькулятор для телефона, при помощи которого все вычисления сделать очень просто.

Быстрое возведение чисел в квадрат без калькулятора

Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

1156 — это и есть квадрат 34.

Проблему данного способа можно описать двумя пунктами:

1) он требует письменного оформления;

2) в процессе вычисления очень легко допустить ошибку.

Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

Например, 28 можно представить в следующем виде:

\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

Аналогично представляем оставшиеся примеры:

\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

Аналогично выбираем варианты и для остальных примеров:

\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

Можете самостоятельно попробовать рассчитать оба разложения, и вы убедитесь, что разложение с наименьшим вторым слагаемым считается проще. А мы перейдем к примерам, которые посчитаем без калькулятора:

\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

\[{{50}^{2}}=2500\]

Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

\[{{51}^{2}}=2500+50+51=2601\]

И так со всеми числами, отличающимися на единицу.

Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

\[{{21}^{2}}=400+20+21=441\]

\[{{39}^{2}}=1600-40-39=1521\]

\[{{81}^{2}}=6400+80+81=6561\]

Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

Ключевые моменты

С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

Для начала запомните квадраты значений, кратных 10:

\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,..., \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

Далее — выкладки квадрата суммы или разности, в зависимости от того, к какому опорному значению ближе наше искомое выражение. Например:

\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

Как считать еще быстрее

Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

— это и есть формула.

\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

— аналогичная формула для чисел, больших на 1.

Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!

Смотрите также:

  1. Что такое числовая дробь
  2. Задача B1 — время, числа и проценты
  3. Пробный ЕГЭ 2012. Вариант 7 (без производных)
  4. Специфика работы с логарифмами в задаче B15
  5. Задача C1: тригонометрия и показательная функция — 1 вариант

Квадратный метр это сколько: как измерить квадратуру комнаты самостоятельно

При проведении ремонтных работ возникает вопрос: квадратный метр – это сколько необходимо материалов, чтобы его покрыть.

Чтобы не потратить лишние деньги, лучше для начала произвести расчет квадратных метров комнаты и только потом отправляться в магазин с конкретными требованиями.

На упаковках с красками, штукатуркой, грунтовкой обязательно обозначено, на какой размер помещения рассчитано данное количество смеси.

Главный вопрос – сколько необходимо упаковок или банок, чтобы хватило на площадь стен или пола.

Что такое квадратный метр

Для начала надо определиться, что из себя представляет квадратный метр. Люди, которые плохо учили в школе математику, все равно рано или поздно сталкиваются с проблемой подсчета количества строительных материалов. Поэтому квадратный метр – основная точка отсчета при определении площади помещения.

Если нарисовать квадрат (это геометрическая фигура с одинаковыми сторонами), и сторона будет равна 100 см, то при умножении на 100 получим число 10000 см. это означает, что размер данной фигуры 10000 см2. Можно проще. Посчитать в метрах: 100 см – это 1 м. Применяем формулу подсчета площади – перемножаем две стороны, то есть 1 умножаем на 1, получаем 1 м. Значит, размер квадрата 1 кв.м.

Инструменты для подсчета квадратных метров

Для вычислений необходимо подготовить калькулятор.

Если его нет, тогда таблицу умножения на обычной тетради для первоклассника.

Если стены имеют не 2, не 3 метра, а, например 2,5 метра, то лучше все-таки калькулятор. Это чересчур сложная нагрузка для мозга, который не привык работать с цифрами.

Желательно иметь под руками листок бумаги и ручку для записи.

Измерять необходимо рулеткой или сантиметром.

Формула подсчета квадратных метров

Чтобы рассчитать площадь, необходимо применить формулу квадратного метра А X B, где число А – это длина одной стороны, а число В – длина второй стороны. Они могут быть одинаковы, если форма пола или стены квадратная.

Чаще всего она не квадратная, а прямоугольная, то есть число А будет иметь одно значение, а число В – другое. Их необходимо будет перемножить в уме, или по таблице умножения, или на калькуляторе. И полученное число будет площадью, которую надо будет покрывать краской или еще чем-нибудь.

Это интересно! Иногда нужно знать как правильно высчитываются размеры. Сколько же дюймов в мм? Об этом можно прочесть в нашей статье.

Бывает, что форма пола не стандартная, а, например, трапециевидная. Тогда сложнее, особенно тем людям, кто не знает, что такое треугольник (такое тоже есть в природе). Чтобы рассчитать размер трапеции, необходимо посчитать сначала площадь прямоугольника в середине, потом величину каждого треугольника по бокам, потом эти три числа сложить. Не легче ли сразу позвать бригаду рабочих? Пускай они думают, как рассчитать квадратные метры комнаты.

Важно! Если на этом этапе возникло непонимание, то лучше сразу позвать учителя математики и попросить подсчитать, сколько кв. метров имеет комната.

Площадь пола или потолка

Потолка и пол в обычной квартире одинаковые. Как посчитать квадратные метры? Очень просто. Если помещение мансардное, тогда потолка там нет – есть только пол и стены.

Этап № 1. Измерить длину комнаты и записать полученное число на бумаге. Если число целое, тогда пишем просто цифру. Например, 5 (м). Если число больше 5, но меньше 6, тогда придется вспомнить десятичные дроби и написать, к примеру, 5,5 (м).

Этап № 2. Измерить ширину комнаты и записать аналогично. К примеру – 3м.

Этап № 3. Теперь необходимо перемножить эти два числа. Пример: 5 x 3 = 15м. Итак, площадь пола – 15 кв. м. Следовательно, размер потолка также будет равняться 15 кв. м. Записать это число отдельно и обвести ручкой.

Площадь сплошной стены

Как вычислить квадратуру сплошной стены? Так же, как мы измеряли пол или потолок. Алгоритм действий тот же, что и при подсчете размера пола:

  • измерить длину стены и записать;
  • измерить высоту;
  • перемножить два числа – полученный результат и будет площадью в квадратных метрах.

Пример: высота 2,20 м, длина 7м. 7 x 2,2 = 15,4 м. Площадь стены – 15,4 кв. м.

Как посчитать квадратные метры стены с окном

Сложнее будет иметь дело со стеной, на которой расположено окно.

В таком случае надо отдельно высчитать размер стены, отдельно – размер окна. Потом из большей площади вычесть меньшую. Получится число метров квадратных, которое необходимо будет покрыть краской или штукатуркой.

Алгоритм действий:

  1. По уже пройденному сценарию высчитать размер стены. Пускай будет уже известное число – 15,4 м2.
  2. Далее измерить высоту и длину окна. Перемножить числа. К примеру: длина 1,5 м, высота 1,2 м. Если умножить, то получится 1,8. Значит, площадь окна 1,8 кв. м.
  3. Берем площадь стены и вычитаем из нее размер окна: 15,4 – 1,8 = 13,6. Площадь, которую необходимо будет привести в порядок, – 13,6 кв. м.

Важно! Цифры, которые получаются при подсчетах, обязательно записывать и обводить ручкой, чтобы не потеряться в собственных расчетах.

Как посчитать квадратные метры стены с дверью

Похожие действия необходимо производить, когда требуется высчитать квадратные метры стены с дверью. Если дверь с математической точки зрения простой прямоугольник, то вычисляем ее площадь по обычной формуле А X В. То есть надо измерить высоту и длину, далее числа перемножить и получится размер двери.

Далее из площади стены вычитаем размер двери и получаем квадратуру, на которую необходимо будет покупать отделочные материалы. Если предыдущий хозяин квартиры сделал дверь с аркой, то здесь без вычисления размера круга никак не обойтись.

Измеряем площадь сложных фигур

Круг и треугольник – сложные фигуры для самостоятельного вычисления. Как измерить квадратные метры окружности, если нет математического или инженерного образования? Опять-таки по формуле.

Как измерить размер окружности

Существует формула вычисления площади круга. Есть такое постоянное число – отношение длины окружности к ее диаметру. Оно одинаково для всех размеров круга. Называется оно пи и равняется 3,14. Вот это число и используют при подсчетах.

Этап № 1. Замеряем диаметр (это линия, которая проходит через центр круга от одного края окружности к другому). Пускай диаметр будет равняться 3 м. Далее находим радиус – это половина длины диаметра. То есть 1,5 м. Записываем радиус на бумагу.

Этап № 2. Производим расчеты по формуле S = ПR2, где S – это площадь круга, П – постоянное число, а R – радиус окружности. Получается 3,14 x (1,5 x 1,5) = 7, 065. Площадь данного круга – 7,065 кв. м.

Но это площадь целого круга. Арка над дверью – это половина круга. Значит, еще нужно разделить данное число на два и далее прибавить к прямоугольной площади двери. 7,065 : 2 = 3,53 м2.

Как измерить площадь треугольника

Если предыдущий хозяин квартиры был математик, то он вполне мог сделать на потолке треугольные фигуры, которые приходится реставрировать и выделять другим цветом или штукатуркой. Придется считать, чтобы не переплачивать.

Расчет метра квадратного в треугольной фигуре начинается с внимательного осмотра этой фигуры.

Необходимо найти основание треугольника, то есть линию, на которую опираются две других (как крыша на доме). Далее провести линию из противоположной верхушки к основанию. Эти два числа записать.

  1. Этап № 1. Разделить основание треугольника на 2 и записать. Это число пригодится в недалеком будущем. Измерить высоту и тоже записать.
  2. Этап № 2. Произвести расчет м2 фигуры. Для этого необходимо использовать формулу: S = 0,5аh, где S – площадь треугольника, а – основание, а h – высота. Пример: основание 3 м, высота 2,5 м. Итого: 0,5 x 3 x 2,5 = 3,75. Размер треугольника – 3,75 м2. Записать, чтобы не забыть.

Советы и рекомендации

Таким образом можно высчитать площадь всей квартиры и расписать, что и каким цветом красить. Размеры всех стен и потолка сложить – получится число, на которое надо будет ориентироваться при покупке стройматериалов.

Совет! При расчетах лучше пригласить еще одного человека в помощь. Одна голова хорошо, а две надежнее.

Дело за малым – пойти в магазин и купить материалы. Здесь еще придется считать, так как не все упаковки предназначены для больших помещений. К примеру, размер потолка на кухне 3 x 3. Сколько квадратных метров штукатурки понадобится, если одной упаковкой можно покрыть 3 кв. м? Считаем: размер потолка 9 кв. м. Одна упаковка уходит на 3 кв. м. Следовательно, на весь потолок необходимо 3 пачки.

Если на упаковке написано, что расход на 12 квадратных метров, это означает, сколько материала надо, чтобы покрыть стену размером 3 x 4 м.

Или другой пример. Стена в квартире 6 на 4. Сколько квадратных метров необходимо закрасить? Умножаем 6 на 4, получаем 24 квадратных метра. Это сколько нужно банок краски по 3 л, если каждая банка расходуется на 6 кв. м? Считаем: 24 делим на 6. Получается 4. Значит, необходимо купить 4 трехлитровых банки краски для покрытия всей стены.

Для ремонтных работ всегда лучше взять немного больше материалов, чтобы потом не идти лишний раз в магазин. В будущем, если придется что-то подкрасить или подбелить, остатки материалов могут здорово выручить.

Видео по теме: квадратные метры в помещении

Калькулятор

квадратных метров

Расчет площади прямоугольника

Использование калькулятора

Используйте этот калькулятор, чтобы найти квадратные метры, квадратные метры, квадратные метры или акры для здания, дома, сада или строительного объекта. Вычислите квадратные метры, метры, метры и акры для проектов ландшафта, пола, ковра или плитки, чтобы оценить площадь и количество материала, которое вам понадобится.Также рассчитайте стоимость материалов, когда вы вводите цену за квадратный фут, цену за квадратный ярд или цену за квадратный метр.

Цена вводится в поля, например, как
$ цена: 3.00 за: 1 квадратная единица: фут (ft²)
означает 3 доллара США за 1 квадратный фут.
или
$ цена: 25.00 за: 1000 квадратная единица: фут (ft²)
означает 25 долларов.00 за 1000 квадратных футов
и т.д ....

Если вы хотите рассчитать объем сыпучих материалов, таких как мульча или гравий, воспользуйтесь нашим калькулятор кубометров и кубометров.

Введите размеры в единицах США или метрических единицах. Вычислите площадь по вашим измерениям в дюймах (дюймах), футах (футах), ярдах (ярдах), миллиметрах (мм), сантиметрах (см) или метрах (м). Вы также можете вводить десятичные значения.Например, если у вас есть одно измерение, которое составляет 7 футов 3 дюйма, вы можете ввести его как 7,25 фута (3 дюйма / 12 дюймов = 0,25 фута). Если у вас размер 245 см, вы также можете ввести его как 2,45 м.

Как рассчитать квадратные метры

Квадратный метр - это площадь, выраженная в квадратных футах. Точно так же квадратный метр - это площадь, выраженная в квадратных ярдах. Квадратные метры - тоже общепринятая мера площади.

Предположим, у вас есть прямоугольная область, такая как комната, и, например, вы хотите рассчитать площадь в квадратных футах для пола или ковра.

Прямоугольную площадь можно вычислить, измерив длину и ширину вашей области, а затем умножив эти два числа вместе, чтобы получить площадь в квадратных футах (футы 2 ). Если у вас есть область необычной формы, например L-образная, разделите ее на квадратные или прямоугольные секции и рассматривайте их как две отдельные области. Вычислите площадь каждой секции, затем сложите их и получите общую сумму. Если ваши измерения указаны в разных единицах измерения, например, в футах и ​​дюймах, вы можете сначала преобразовать эти значения в футы, а затем умножить их вместе, чтобы получить квадратные метры площади.

Размер

  • Измерьте стороны вашего участка

Преобразуйте все ваши измерения в футы

  • Если вы измеряли в футах, перейдите к разделу «Вычислить площадь в квадратных футах»
  • Если вы измеряли в футах и ​​дюймах, разделите дюймы на 12 и прибавьте это к своей стопе, чтобы получить общее количество футов
  • Если вы измеряете в другой единице измерения, выполните следующие действия, чтобы преобразовать в футы
    - дюймы: разделите на 12, и это ваше измерение в футах
    - ярды: умножьте на 3, и это ваше измерение в футах
    - сантиметры: умножить на 0.03281 конвертировать в футы
    - метры: умножьте на 3,281, чтобы преобразовать в футы

Вычислить площадь как квадратные метры

  • Если вы измеряете площадь квадрата или прямоугольника, умножьте длину на ширину; Длина x Ширина = Площадь.
  • Для других форм площади см. Формулы ниже, чтобы вычислить площадь (футы 2 ) = квадратные метры.

Преобразование из квадратных дюймов, квадратных футов, квадратных ярдов и квадратных метров

Вы можете, например, выполнить все свои измерения в дюймах или сантиметрах, вычислить площадь в квадратных дюймах или квадратных сантиметрах, а затем преобразовать окончательный ответ в нужные вам единицы, такие как квадратные футы или квадратные метры.

Для преобразования квадратных футов, ярдов и метров используйте следующие коэффициенты преобразования. Для других единиц используйте наш калькулятор для преобразование площади.

  • квадратных футов в квадратные ярды
    • умножьте 2 на 0,11111, чтобы получить 2
    • ярдов
  • квадратных футов в квадратных метров
    • умножить 2 футов на 0.092903 получить м 2
  • квадратных ярдов в квадратных футов
    • умножьте ярды 2 на 9, чтобы получить футы 2
  • Квадратные ярды в Квадратные метры
    • умножьте ярд 2 на 0,836127, чтобы получить m 2
  • квадратных метров в квадратных футов
    • умножить m 2 на 10.7639, чтобы получить ft 2
  • квадратных метров в квадратных ярдов
    • умножьте m 2 на 1.19599, чтобы получить ярд 2

Формулы квадратных метров и изображения для различных областей

Площадь

Рассчитать площадь в квадратных футах для площадь

Используя измерения в футах:

Площадь (футы 2 ) = длина стороны x длина стороны

Площадь прямоугольника

.Калькулятор

квадратных метров - Дюймовый калькулятор

Найдите квадратные метры области, выбрав ее форму и введя размеры. Включите цену за квадратный фут, чтобы оценить общую стоимость.

Выберите форму:

Параллелограмм в квадратных футах

Правильный многоугольник в квадратных футах



Вы хотите конвертировать из квадратных футов?

Площадь в футах - это просто площадь, измеряемая в футах, и ее часто сокращают: кв. Футы или футы 2 .Его часто используют при строительстве, ремонте и ремонте домов, таких как ковровые покрытия, паркетные полы, плитка, обрамление, гипсокартон, окраска и оценка материалов для садоводства.

Найдите квадратные футы точно так же, как если бы вы нашли площадь фигуры, умножив длину на ширину.

Прежде чем умножать длину и ширину, преобразуйте все измерения в футы.

Чтобы вычислить площадь в квадратных футах, когда измерения даны в дюймах или других единицах измерения, сначала преобразуйте измерения длины и ширины в футы, а затем умножьте их.

Определите площадь комнаты или пространства в квадратных футах, выполнив следующие простые шаги:

  • Измерьте длину и ширину области.
  • Преобразуйте эти измерения в футы, если они еще этого не сделали. Преобразование дюймов в футы, ярдов в футы или метров в футы.
  • Умножьте длину в футах на ширину в футах.
  • Чтобы оценить стоимость материалов, умножьте общую площадь в квадратных метрах на цену квадратного метра.
  • Если область не является простой формой, разбейте ее на управляемые части и вычислите площадь каждой части отдельно, а затем сложите их вместе. Например, чтобы измерить пол в вашем доме, вычислите квадратные футы каждой комнаты, затем сложите все измерения площади вместе, чтобы получить общую площадь в квадратных футах.

Например, давайте найдем квадратные футы комнаты, ширина которой 12 футов, длина 16 футов.

площадь = 12 ′ × 16 ′
площадь = 192 кв. фута

Используйте приведенные ниже формулы, чтобы найти квадратные метры для различных форм.Перед использованием формул преобразуйте все измерения в футы.

В нашем калькуляторе площади есть еще больше формул.

Расчет площади дома или жилого дома

Если вы измеряете площадь дома или жилого дома в квадратных футах, при определении жилой площади в квадратных футах необходимо учитывать некоторые особенности. Пригодный для жизни размер дома помогает определить рыночную стоимость и цену дома, а также помогает покупателям понять размер дома.

Только пригодные для проживания комнаты с отделанными стенами, полом и потолком засчитываются в законченную площадь дома.Чтобы комната считалась пригодной для проживания, она должна быть закончена и иметь отопление или кондиционер, в зависимости от обстоятельств. Внутренние помещения считаются квадратными метрами дома, а открытые - нет.

Чтобы рассчитать общую площадь, измерьте каждую комнату в футах с помощью рулетки, затем умножьте длину и ширину каждой комнаты, чтобы получить квадратные метры, а затем сложите их все вместе. Приведенный выше калькулятор может помочь определить квадратные футы каждой комнаты, а затем просто сложить все площади комнаты.У нас также есть отличные ресурсы по измерению помещений и сложных пространств.

Чтобы рассчитать цену квадратного фута вашего дома, разделите общую цену на количество квадратных футов.

цена за фут 2 = общая цена ÷ всего фут 2

Например, , чтобы найти цену за 2 кв. М дома, который стоит 200 000 долларов и составляет 2 000 футов 2 , используйте эту формулу.

цена за фут 2 = 200000 долларов США ÷ 2000 футов 2
цена за фут 2 = 100 долларов США

.Калькулятор

квадратных футов | Как измерить квадратные ноги

  • Дом
  • ProFinder
  • Pro обзоры
  • Руководство по истинной стоимости + -
    • Категории проектов
    • Найди профессионала
  • Мой HomeAdvisor + -
    • Приборная панель
    • Проектов
    • Настройки электронной почты
    • Настройки
  • Войдите или зарегистрируйтесь
  • Вы домашний профессионал?
  • ProFinder
    ProFinder: Популярные категории
    • Дополнения и переделки
    • Кондиционирование и охлаждение
    • Ванная
    • Строители (новостройки), архитекторы и дизайнеры
    • Шкафы и столешницы
    • Плотницкие работы
    • Ковер
    • Клининговые услуги
    • Бетон, кирпич и камень
    • Палубы, веранды, беседки и игровое оборудование
    • Декораторы и дизайнеры
    • Подъездные пути, патио, дорожки, ступени и этажи
    • Гипсокартон и изоляция
    • Электрооборудование, телефон и компьютеры
    • Заборы
    • Полы
    • Фонды
    • Гаражи, двери, открыватели
    • Желоба
    • Разнорабочие
    • Отопление и охлаждение
    • Кухня
    • Пейзаж, террасы и заборы
    • Уход за газоном, деревьями и кустарниками
    • Окрашивание и окраска
.Калькулятор квадратного корня

Графический калькулятор Texas Instruments TI-84 Plus

Чтобы извлечь квадратный корень из числа, нажмите [2ND] (дополнительная функциональная клавиша), а затем [ √ & nbsp ] (клавиша с символом корня, которая используется для извлечения квадратного корня из числа), затем число, из которого вы хотите найти квадратный корень, а затем клавишу [ENTER].

Пример :
Чтобы найти квадратный корень из 2, нажмите:
[2ND] [ √ ] 2 [ENTER]
Это даст вам ответ: 1.414213562, если все сделано правильно.

(Примечание: этот же метод также работает с калькуляторами TI-83 и TI-81)

График :
Чтобы построить график функции квадратного корня y = √x
Нажмите [Y =] [2ND] [ √ & nbsp ] [X, T, O, n] [GRAPH]

Используйте клавишу [Trace] и клавиши со стрелками, чтобы отслеживать и отображать значения на графике.

(Чтобы увидеть, как выглядит график на этом калькуляторе, нажмите кнопку «Показать график» под изображением калькулятора на этой странице.)

Плюсы:
Его можно использовать на многих вступительных экзаменах в колледж (проверьте критерии экзамена).

Это популярный калькулятор. (Если вам нужна помощь, вероятность найти того, кто умеет ею пользоваться, выше).

На дисплее отображается семь строк ввода / вывода. Можно просматривать и проверять длинные уравнения. (Это хорошее преимущество графических калькуляторов по сравнению с научными калькуляторами, у которых может быть только однострочный дисплей.) Еще одно преимущество большого дисплея - вы можете сравнить свой текущий ответ с прошлыми ответами, которые все еще отображаются на экране.Это часто может помочь вам обнаружить ошибку ввода, которая в противном случае могла бы остаться незамеченной.

Минусы:
Он крупнее научного калькулятора.
Он стоит примерно на 85 долларов больше, чем научный калькулятор.

Цена:
Лучшая цена для этого калькулятора на 9-2-2014 составляет около 94 долларов США.

Графический калькулятор Casio (FX-9750GII)

Чтобы извлечь квадратный корень из числа, нажмите [SHIFT], а затем [ √ ] (радикальный символ находится над клавишей x 2 ), затем число, из которого вы хотите найти квадратный корень, а затем клавишу [EXE].

Пример :
Чтобы найти квадратный корень из 2, нажмите:
[СДВИГ] [ √ & nbsp ] 2 [EXE]
Это даст вам ответ: 1.414213562, если введен правильно.

График :
Чтобы построить график функции квадратного корня y = √x
Нажмите [MENU], выберите Graph, [EXE]
[СДВИГ] [ √ & nbsp ] [X, O, T] [EXE] [F6]
Используйте клавишу [F6] для переключения между экраном графика и экраном уравнения.

Используйте клавишу [F1] и клавиши со стрелками для отслеживания и отображения значений на графике.

(Чтобы увидеть этот график, нажмите кнопку «Показать график» под изображением калькулятора на этой странице.)

Плюсы:
Стоимость составляет половину стоимости калькулятора ТИ-84.
Он немного меньше калькулятора ТИ-84.
Его можно использовать на многих вступительных экзаменах в колледж (проверьте критерии экзамена).
На дисплее отображается семь строк ввода / вывода.

Минусы:
Он не так популярен, как калькулятор ТИ-84. (Если у вас возник вопрос о том, как пользоваться калькулятором, найти кого-то, кто поможет, может быть сложнее.)

Цена:
Лучшая цена на 2 сентября 2014 года составляет около 42,74 доллара США.

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.