ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Принцип солнечной батареи


Принцип работы солнечной батареи: как устроена панель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

Содержание статьи:

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Фото из

Установка из солнечных панелей позволяет рационально использовать бесплатную, к тому же неисчерпаемую энергию солнечных лучей

Миниатюрные электростанции, собранные из солнечных батарей, обеспечат энергией неэлектрифицированные объекты и дома, расположенные в регионах с перебоями в поставке электричества

Установки, перерабатывающие УФ излучение в электроэнергию, занимают минимум места. их располагают на крышах домов, хозпостроек, гаражей, беседок, веранд. Реже их располагают на открытых, не занятых постройками и насаждениями площадках

Солнечные батареи - незаменимое оборудование для любителей путешествий. Оно обеспечит энергией вдали от источников электропитания

Использование солнечной энергии предоставит возможность существенно сократить затраты на содержание дач и загородных домов. собрать и установить экономически полезную систему без затруднений можно собственными руками

Расположенные на корме яхты, палубе корабля или носу катера солнечные батареи обеспечат электроэнергией, благодаря которой можно поддерживать стабильную связь с берегом

Портативная солнечная панель с аккумулятором исключит возникновение экстремальных ситуаций вдали от населенных пунктов, гарантирует зарядку мобильных устройств для общения с близкими

Выпускаемые специально для походов легкие компактные зарядные устройства на основе солнечных батарей обеспечат энергией телефоны, рации, планшеты и медиа-технику

Рациональное использование природных ресурсов

Обеспечение энергией неэлектрифицированных объектов

Монтаж солнечных панелей на крыше

Мобильная солнечная батарея в кемпинге

Самостоятельный монтаж на дачном участке

Генератор энергии в морских прогулках

Портативная солнечная панель с аккумулятором

Занимающий минимум места прибор

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для .

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

Галерея изображений

Фото из

Гелио-электростанция на загородном участке

Солнечные монокристаллические батареи

Внешний вид солнечных батарей на монокристаллах

Монокристаллическая единица солнечной батареи

Поставка готовой к монтажу солнечной батареи

Поликристаллический фотоэлемент для солнечной батареи

Гелио-батарея из поликристаллических фотоэлементов

Изготовление солнечной батареи своими руками

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

Галерея изображений

Фото из

Гибкий вариант солнечной батареи

Наклейка гибкого фотоэлемента на жалюзи

Зарядка для мобильников на гибкой батарее

Устойчивая к механическим воздействиям панель

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться , который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. .
  4. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен . Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи смотрите в следующем видеоролике:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Принцип работы солнечной батареи - как работает гелиобатарея ,виды, плюсы и минусы

Здесь вы узнаете:

Принцип работы солнечной батареи основан на фотоэлектрическом эффекте. Солнечный свет, попадая на кремниевый полупроводник, преобразуется в электрический ток. Затем он накапливается в аккумуляторах и используется для бытовых нужд.

Принцип работы солнечных батарей

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall - аккумулятор для солнечных панелей на 7 КВт - и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.


Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.


Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.


В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.


Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.


Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

  1. 1. Гибкие;
  2. 2. Жёсткие.

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

  1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью. Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании. Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;
  2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;
  3. Солнечные батареи, фотоэлемент которых выполнен из селена;
  4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;
  5. Из органических соединений;
  6. Из арсенида галлия
  7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Сфера применения солнечной энергии

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.


Солнечные батареи удобно применять там, куда нельзя подвести электричество

Преимущества солнечных батарей

Солнечная энергия — это перспективное направление, которое постоянно развивается. Они имеют несколько основных достоинств. Удобство использования, долгий срок службы, безопасность и доступность.

Положительные стороны применение данной разновидности аккумуляторных батарей:

  • Возобновляемость – этот источник энергии практически не имеет ограничений притом бесплатный. По крайней мере на ближайшие 6.5 миллиардов лет. Нужно подобрать оборудование, установить его и использовать по назначению (в частном доме или коттеджном участке).
  • Обильность – Поверхность земли в среднем получает около 120 тысяч терравват энергии что в 20 раз превышает нынешнее энергопотребление. Солнечные батареи для коттеджей или частных домов имеют огромный потенциал для использования.
  • Постоянство – солнечная энергия постоянна поэтому человечеству не грозит перерасход в процессе ее использования.
  • Доступность – солнечная энергия может вырабатывать на любой территории, при наличии естественного света. При этом чаще всего она применяется для отопления жилища.
  • Экологическая чистота – солнечная энергетика является перспективной отраслью, которая в будущем заменит электростанции, работающие на невозобновляемых ресурсах: газ, торф, уголь и нефть. Безопасны для здоровья людей и домашних животных.

Важно: Отдельно хочется подчеркнуть термоядерную энергию. Несмотря на то, что «мирный атом» позиционируется, как безопасный, при авариях на АЭС этот фактор полностью перечеркивается (Три-Лонг-Айленд, Чернобыль, Фукусима).

  • При производстве панелей и монтаже солнечных электростанций в атмосферу не происходят значительные выбросы вредных или токсичных веществ.
  • Бесшумность – выработка электроэнергии производится практически бесшумно, и поэтому этот вид электростанций лучше ветровых электростанций. Их работа сопровождается постоянным гулом из-за чего оборудование быстро выходит из строя, а сотрудники должны делать частые перерывы на отдых.
  • Экономичность – при использовании солнечных батарей владельцы недвижимости ощущают значительное снижение коммунальных расходов на электроэнергию. Панели имеют долгий срок службы – производитель дает гарантию на панели от 20 до 25 лет. При этом обслуживание всей электростанции сводится к периодической (раз в 5-6 месяцев) очистке поверхностей панелей от грязи и пыли

Недостатки солнечных батарей

К сожалению, и этот практически неисчерпаемый источник энергии имеет определенные ограничения и недостатки:

  • Высокая стоимость оборудования – автономная солнечная электростанция даже небольшой мощности доступна далеко не каждому. Оборудование частного дома такими аккумуляторами стоит недешево, но помогает снизить расходы на оплату коммунальных услуг (электроэнергии).
  • Обустройство собственного жилища солнечными батареями потребует финансовых затрат.
  • Периодичность генерации — солнечная электростанция не способна обеспечить полноценную бесперебойную электрификацию частного дома.

 Важно: Проблему можно решить, установив аккумуляторы высокой емкости, однако из-за этого возрастет стоимость получения энергии, что сделает ее невыгодной по сравнению с традиционными энергоносителями.

  • Хранения энергии – в солнечной электростанции аккумуляторная батарея является самым дорогим элементом (даже батареи небольшого объема и панели на гелевой основе).
  • Низкий уровень загрязнения окружающей среды – солнечная энергия считается экологически чистой, однако производственный процесс батарей сопровождается выбросами трифторида азота, оксидов серы. Все это создает «парниковый эффект».
  • Использование в производстве редкоземельных элементов – тонкопленочные солнечные панели имеют в своем составе теллурид кадмия (CdTe).
  • Плотность мощности – это количество энергии, которое можно получить с 1 кв. метра энергоносителя. В среднем этот показатель составляет 150-170 Вт/м2. Это гораздо больше по сравнению с другими альтернативными источниками энергии. Однако несравнимо, ниже чем у традиционных (это касается атомной энергетики).

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

Как работает солнечное отопление

Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.

Между температурой коллектора и накопительного элемента появляется разница. Носитель тепла, что чаще всего является водой, в которую добавлен антифриз, начинает циркулировать о системе. Совершаемая жидкостью работа является именно кинетической энергией.

По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.

Итак, мы выяснили принцип работы солнечных батарей.

Солнечные батареи принцип действия

Приборы, служащие для преобразования электроэнергии из солнечных лучей, в народе называют солнечными батареями. По сути, такие электрогенераторы работают пока светит солнце, а значит такой источник энергии является практически неиссякаемым.

История открытия солнечных батарей

Александр Эдмон Беккерель

В XIX веке (1839 год) в возрасте 12 лет, французский естествовед Александр Эдмон Беккерель увидел фотогальванический эффект, трудясь в лаборатории своего отца Антуана Беккереля. Суть эффекта состоял в том, что при освещении платиновых пластин, находящихся в растворе электролита, гальванометр зарегистрировал появление ЭДС (электродвижущая сила). Взяв за основу этот эффект, Беккерель спроектировал актинограф — прибор для регистрации интенсивности света.

Уиллоуби Смит

Дальнейшим шагом на пути к солнечным батареям стало открытие фотопроводимости селена. Его осуществил Уиллоби Смит, английский инженер-электрик, занимавшийся разработкой изоляции подводных кабелей. В 1873 году он обнаружил, что электрическое сопротивление серого селена сильно «прыгает» от замера к замеру. Оказывается электропроводность стержней из селена стремительно возрастает при попадании на света. А в 1883 году американец Чарльз Фритс произвел первый фотоэлемент из тонкого слоя селена, находящийся между пластинами золота и меди.

Генрих Герц

Немецкий физик Генрих Герц в 1887 году выявил влияние солнечного излучения на электрический разряд. Смотря одновременно 2 разряда, Герц отметил, что яркая вспышка света от электрической искры 1-го разряда повышает длительность другого разряда.

Александр Григорьевич Столетов

В 1888 году наш земляк Александр Григорьевич Столетов изучил, как разряжается под воздействием освещения отрицательно заряженный цинковый электрод и как данный процесс зависит от интенсивности света.

Благодаря работам английского физика Джозефа Томсона в 1899 году и немецкого физика Филиппа Ленарда в 1900 году было подтверждено, что свет, попадая на металлическую поверхность, выбивает из неё электроны, вызывая возникновения фототока. Но целиком понять естество данного явления получилось в 1905 году, когда Альберт Эйнштейн предоставил его разъяснение с позиции квантовой теории.

Джозеф Томсон (слева) и Филипп Ленард (справа)

Обширное применение солнечных модулей началось с 1946 года, после того как работы по увеличению производительности приборов были запатентованы. А в 1957 году солнечные батареи уже были запущены в космическое пространство в составе искусственного спутника земли. Данный полет продемонстрировал, что работа солнечных батарей способна не только обеспечивать энергией спутники, а считается единственным возможным источником питания для бесперебойной работы таких автономных устройств в космосе.

Принцип работы и устройство солнечной батареи

Устройство и принцип действия солнечной батареи

На сегодняшний день солнечные преобразователи производятся в большинстве случаев из кремния. Отличают 2 вида передовых технологий, на базе которых функционируют батареи: поликристаллическая и монокристаллическая.

Поликристаллическая по стоимости ниже, благодаря чему не особо эффективная технология.

Монокристаллическая по стоимости выше, цена которой зависит от трудозатратной технологии изготовления, а точнее выращивания монокристаллов. Она предоставляет больше количества электроэнергии и срок службы ее существенно больше. Благодаря этому, монокристаллический солнечный модуль является наиболее лучшим для использования его в повседневной жизни.

Работа солнечного элемента сопряжена с его устройством. Состоит он из кремниевых наружных пластин, с различными свойствами проводимости, и внутреннего слоя чистого монокристаллического кремния. Внутренний слой имеет установленную дырочную проводимость. Один из наружных проводников тоньше противоположного слоя и покрыт особым слоем, образующим цельный металлический контакт.

При попадании на один из наружных слоев солнечного света создается фотогальванический эффект, что приводит к формированию в этом слое свободных электронов. Данные частицы получают вспомогательную энергию и способны преодолеть внутренний слой элемента, который в данном случае именуется барьером. Чем больше объем солнечного света, тем сильнее происходит процесс прохождения или перепрыгивания электронов от одной наружной пластины к другой, минуя внутреннюю перегородку. При замыкании наружных пластин возникает напряжение. Та пластина, которая усиленно отдает частицы, создает в себе так называемые дырки, обретает знак минус, а которая принимает, обретает знак плюс.

Типы солнечных батарей

На сегодняшний день на рынке присутствуют 5 видов солнечных батарей в которых используются разные материалы и фотоэлементы.

Максимальную известность приобрели солнечные батареи из поликристаллических фотоэлементов. Результативность подобных панелей обычно составляет 12-14 %.

Поликристаллическая солнечная батарея

Панели из монокристаллических фотоэлементов характеризуются наиболее большим коэффициентом полезного действия (14-16 %). Подобные панели немножко дороже, нежели панели из поликристаллического кремния. Так же фотоэлементы выполнены в виде многоугольника и из-за этого не целиком наполняют пространство солнечной батареи, что приводит к наиболее низкой производительности всей батареи по отношению к одной ячейки фотоэлемента.

Монокристаллическая солнечная батарея

Солнечные батареи из аморфного кремния располагают минимальной результативности (6-8 %), однако в то же время обладают низкой себестоимостью производимой энергии.

Солнечная батарея из аморфного кремния

Солнечные батареи на основе Теллурид Кадмия (CdTe) внешне изображают тонкопленочную технологию изготовления солнечных панелей. Полупроводниковые слои покрывают панель толщиной всего в несколько сотен микрон. Разработка считается наименее опасным для окружающей среды. Результативность солнечных батарей CdTe составляет примерно 11-12 %.

Солнечная батарея на основе Теллурид Кадмия (CdTe)

Солнечные батареи в составе которых присутствуют смеси Индия, Галлия, Меди, Селена (CIGS) так же считаются тонкопленочной технологией изготовления фотоэлементов. Эффективность колеблется примерно от 10 до 15 %. Такая технология не особо распространена на рынке, но весьма быстро развевается.

Солнечные батареи на основе смеси Индия, Галлия, Меди, Селена (CIGS)

Области применения солнечных панелей

  • Портативная электроника. Для снабжения электричеством и(или) подзарядки аккумуляторных батареи разной бытовой электроники.
  • Электромобили. Подзарядка автотранспорта.
  • Авиация. Разработка самолета, использующего только энергию солнца.
  • Энергообеспечение зданий. Электроснабжение дома, за счет размещения крупных солнечных батарей на крышах.
  • Энергообеспечение населённых пунктов. Создание солнечных электростанций.
  • Дорожное покрытие. Дороги, покрытые солнечными панелями, для освещения их же в ночное время.
  • Использование в космосе. Электроснабжение космических аппаратов.
  • Использование в медицине. Внедрение под кожу миниатюрную солнечную батарею для обеспечения работы приборов, имплантированных в тело.

Преимущества и недостатки солнечных источников энергии

Преимущества:

  • Экологически чистая энергия;
  • Неисчерпаемость и постоянство солнечной энергии;
  • Минимум обслуживания;
  • Длительный срок службы;
  • Доступность;
  • Экономичность;
  • Большая область применения.

Недостатки:

  • Высокая цена панелей;
  • Нерегулярность из-за погодных условий;
  • Высокая цена аккумуляторных батарей для аккумулирования энергии;
  • Для большей мощности необходимо устанавливать большие площади солнечных панелей.

Таким образом, анализируя все вышеупомянутое, можно отметить, что в данный момент получить выгоду от солнечной энергии могут лишь достаточно богатые собственники загородных домов. Они могут без проблем дождаться того этапа, когда батареи окупят себя.

Принцип работы солнечной батареи и ее устройство

Относительно недавно считалась фантастической сама идея обеспечивать частные дома электричеством автономно. Сегодня это объективная реальность. В Европе солнечные батареи используются уже продолжительное время, ведь это практически неисчерпаемый источник дешевой энергии. У нас получение электричества от таких устройств только обретает популярность. Данный процесс происходит не слишком быстро, и виной тому – высокая стоимость их.

Принцип работы солнечной батареи основан на том, что в двух кремниевых пластинах, покрытых разными веществами (бором и фосфором), под действием солнечного света возникает электрический ток. В пластине, которая покрыта фосфором, появляются свободные электроны.

Отсутствующие частицы образуются в тех пластинах, которые покрыты бором. Электроны начинают двигаться под действием света солнца. Так образуется электрический ток в солнечных батареях. Тонкие жилы из меди, которыми покрыта каждая батарея, отводят от нее ток и направляют по назначению.

С помощью одной пластины можно питать энергией небольшую лампочку. Вывод напрашивается сам собой. Для того, чтобы солнечные батареи обеспечивали дом электричеством достаточной мощности, нужно чтобы их площадь была довольно большой.

Кремниевые механизмы

Итак, принцип работы солнечной батареи понятен. Ток вырабатывается при воздействии ультрафиолетового света на специальные пластины. Если в качестве материала для создания таких пластин используется кремний, то батареи называются кремниевыми (или кремневодородными).

Подобные пластины требуют очень сложных систем производства. Это, в свою очередь, сильно влияет на стоимость изделий.

Кремниевые солнечные батареи бывают разных типов.

Монокристаллические преобразователи

Представляют собой панели со скошенными углами. Их цвет всегда чисто черный.

Если говорить о монокристаллических преобразователях, то принцип работы солнечной батареи кратко можно охарактеризовать как средне эффективный. Все ячейки светочувствительных элементов такой батареи направлены в одну сторону.

Это позволяет получить самый высокий результат среди подобных систем. КПД батарей этого типа достигает 25%.

Минусом является то, что такие панели должны быть всегда обращены лицевой стороной к солнцу.

Если солнце прячется за тучами, опускается к горизонту, или еще не успело взойти, то батареи будут вырабатывать ток довольно слабой мощности.

Поликристаллические

Пластины этих механизмов всегда квадратные, темно-синего цвета. В состав их поверхности включены неоднородные кристаллы кремния.

КПД поликристаллических батарей не настолько высок, как у монокристаллических моделей. Он может достигать 18%. Однако этот недостаток компенсируется достоинствами, о которых будет сказано ниже.

Принцип работы солнечной батареи этого типа позволяет изготавливать их не только из чистого кремния, но также из вторичных материалов. Этим объясняются некоторые дефекты, встречающиеся в оборудовании. Отличительной особенностью механизмов данного типа является то, что они могут достаточно эффективно вырабатывать электрический ток даже при пасмурной погоде. Такое полезное качество делает их незаменимыми в местах, где рассеянный солнечный свет является обычным повседневным явлением.

Аморфные панели из кремния

Аморфные панели дешевле остальных, это обуславливает принцип работы солнечной батареи и ее устройство. Каждая панель состоит из нескольких тончайших слоев кремния. Их изготавливают путем напыления частиц материала в вакууме на фольгу, стекло или пластмассу.

КПД панелей значительно меньше, чем у предыдущих моделей. Он достигает 6%. Кремниевые слои довольно быстро выгорают на солнце. Уже через полгода использования этих батарей их эффективность упадет на 15%, а иногда и на все 20.

Два года работы полностью исчерпают ресурс действующих веществ, и панель нужно будет менять.

Но есть два плюса, из-за которых эти батареи все же покупают. Во-первых, они работают даже в пасмурную погоду. Во-вторых, как уже говорилось, они не такие дорогие, как другие варианты.

Фотопреобразователи гибридного типа

Аморфный кремний является основой для расположения микрокристаллов. Принцип работы солнечной батареи делает ее похожей на поликристаллическую панель. Отличие батарей такого типа состоит в том, что они способны вырабатывать электрический ток большей мощности в условиях рассеянного солнечного света, например, в пасмурный день или на рассвете.

Кроме того, батареи работают под воздействием не только солнечного света, но и в инфракрасном спектре.

Полимерные пленочные солнечные преобразователи

У этой альтернативы панелям из кремния есть все шансы занять лидирующее положение на рынке солнечных батарей. Они напоминают пленку, состоящую из нескольких слоев. Среди них можно выделить сетку алюминиевых проводников, полимерный слой активного вещества, подложка из органики и защитной пленки.

Такие фотоэлементы, объединенные друг с другом, образуют пленочную солнечную батарею рулонного типа. Эти панели легче и компактнее кремниевых. При их изготовлении не используется дорогостоящий кремний, и сам процесс производства не такой затратный. Это делает рулонную панель дешевле всех прочих.

Принцип работы солнечной батареи делает их КПД не слишком высоким.

Он достигает 7%.

Процесс изготовления панелей этого типа сводится к многослойному печатанию на пленку фотоэлемента. Производство налажено в Дании.

Еще одним преимуществом является возможность резать рулонную батарею и подгонять ее под любой размер и форму.

Минус лишь один. Батареи только начали производить, поэтому еще довольно непросто ими обзавестись.

Но есть повод полагать, что эти элементы быстро обретут заслуженную хорошую репутацию среди потребителей, что даст изготовителям возможность наладить производство в более крупных масштабах.

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

Как работает солнечное отопление?

Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.

Между температурой коллектора и накопительного элемента появляется разница. Носитель тепла, что чаще всего является водой, в которую добавлен антифриз, начинает циркулировать о системе. Совершаемая жидкостью работа является именно кинетической энергией.

По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.

Итак, мы выяснили принцип работы солнечных батарей.

Принцип работы солнечной батареи - как работает гелиобатарея ,виды, плюсы и минусы

Плюсы и минусы

Использование гелиоустановок, как в прочем и любого технического устройства, имеет свои достоинства и недостатки, которые можно сформулировать следующим образом:

  1. Достоинства применения гелиосистем, как источника энергии:
  • Солнце, это источник бесплатной энергии, количество которой несоизмеримо больше, чем потребности человека на текущий момент времени.
  • Это возобновляемый ресурс, процесс воспроизводства которого, не зависит от процессов его потребления и переработки.
  • Экологическая безопасность процесса получения и преобразования энергии.
  • Возможность создания автономных систем энергоснабжения, вне зависимости от вида энергии получаемого в процессе преобразования.
  • Осуществление работы в автоматическом режиме, без постоянного контроля пользователя установок подобного типа.
  1. Недостатки, свойственные гелиоустановкам:
  • Зависимость от погодных условий, времени года и географического месторасположения.
  • Низкий КПД – для гелиосистем, использующих солнечные батареи (электрические системы) и большие габаритные размеры, для получения большой мощности, как при производстве тепловой, так и электрической энергий.

Виды солнечных панелей

Кроме мощности и других рабочих параметров, солнечные панели различаются по материалам, используемым в их конструкции.

Монокристаллический кремний

В наиболее качественных панелях применяется монокристаллический кремний. Данные элементы изготавливаются в форме квадрата с закругленными углами. Такая конфигурация обусловлена технологией изготовления, когда выращенные кристаллы изначально принимают цилиндрическую форму. Далее края цилиндров обрезаются и основание принимает нужную конфигурацию, из чего потом делаются заготовки.

Готовые ячейки устанавливаются на подложку и накрываются стеклом или ламинированным покрытием. Полученные таким способом батареи имеют максимально возможный КПД, отличаются высоким качеством и надежностью в работе.

Поликристаллический кремний

Технология изготовления почти такая же за исключением формы кристалла, который в конце изготовления принимает не круглую, а квадратную форму. В его структуру входят мелкие кристаллы в большом количестве, поэтому конечный продукт и получается в квадратной конфигурации.

Сырьем служат от

Доступными словами принципы работы солнечных батарей



Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.

Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.

Все дело в кремнии

Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.

Солнечная панель состоит из нескольких фотоэлементов.

Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)

Кремний располагается между двумя токопроводящими слоями.

"Сэндвич" из кремния и токопроводящих слоев

Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.

Структура атомов кремния

Для того, чтобы получить ток используют два различных слоя кремния:

  • Кремний N-типа имеет избыток электронов
  • Кремний Р-типа – дополнительные места для электронов (дырки)

Кремний Р и N типа

Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.

Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р - сторону пластины.

После "освобождения" электрон стремится к проводнику

Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка :) . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».

Работа фотоэлемента

Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.

Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.

Почему человек не перешел на солнечную энергию полностью?



Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.

  1. Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
  2. КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
  3. Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
  4. Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты

Видео о том, как производят солнечные батареи.

В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.



Окупаются ли солнечные батареи для частного дома Выгодно ли покупать комплектом солнечные батареи для дачи Фотомануал: солнечная батарея своими руками шаг за шагом Подбираем аккумулятор для солнечной электростанции

солнечных батарей | Определение, принцип работы и развитие

Солнечный элемент , также называемый фотоэлектрическим элементом , любое устройство, которое напрямую преобразует энергию света в электрическую посредством фотоэлектрического эффекта. Подавляющее большинство солнечных элементов изготавливается из кремния - с повышением эффективности и снижением стоимости, поскольку материалы варьируются от аморфных (некристаллических) до поликристаллических и кристаллических (монокристаллических) форм кремния.В отличие от батарей или топливных элементов, солнечные элементы не используют химические реакции и не требуют топлива для производства электроэнергии, и, в отличие от электрических генераторов, они не имеют движущихся частей.

Схема структуры солнечного элемента

Обычно используемая структура солнечного элемента. Во многих таких ячейках абсорбирующий слой и задний переходный слой изготовлены из одного и того же материала.

Encyclopædia Britannica, Inc.

Британская викторина

Гаджеты и технологии: факт или вымысел?

Виртуальная реальность используется только в игрушках? Использовались ли когда-нибудь роботы в бою? В этой викторине вы узнаете о гаджетах и ​​технологиях - от компьютерных клавиатур до флэш-памяти.

Солнечные элементы можно объединять в большие группы, называемые массивами. Эти массивы, состоящие из многих тысяч отдельных ячеек, могут функционировать как центральные электростанции, преобразовывая солнечный свет в электрическую энергию для распределения между промышленными, коммерческими и жилыми пользователями. Солнечные элементы в гораздо меньшей конфигурации, обычно называемые панелями солнечных батарей или просто солнечными панелями, были установлены домовладельцами на своих крышах, чтобы заменить или увеличить их обычное электроснабжение.Панели солнечных батарей также используются для обеспечения электроэнергией многих удаленных земных участков, где обычные источники электроэнергии либо недоступны, либо чрезмерно дороги в установке. Поскольку у них нет движущихся частей, которые могли бы нуждаться в обслуживании, или топлива, которое потребовало бы пополнения, солнечные элементы обеспечивают питание для большинства космических установок, от спутников связи и метеорологических спутников до космических станций. (Однако солнечной энергии недостаточно для космических зондов, отправляемых к внешним планетам Солнечной системы или в межзвездное пространство, из-за распространения лучистой энергии с удалением от Солнца.) Солнечные элементы также используются в потребительских товарах, таких как электронные игрушки, карманные калькуляторы и портативные радиоприемники. Солнечные элементы, используемые в устройствах такого типа, могут использовать искусственный свет (например, от ламп накаливания и люминесцентных ламп), а также солнечный свет.

Международная космическая станция

Международная космическая станция (МКС) была построена секциями, начиная с 1998 года. К декабрю 2000 года основные элементы частично завершенной станции включали построенный американцами соединительный узел Unity и два российских объекта - Заря , силовой модуль, и Звезда, начальные жилые помещения.Российский космический корабль, на борту которого находился первый экипаж из трех человек, пришвартован в конце "Звезды". Фотография сделана с космического корабля "Индевор".

Национальное управление по аэронавтике и исследованию космического пространства Изучите способы сделать солнечные элементы более эффективными, действенными и доступными

Узнайте об усилиях по повышению эффективности солнечных элементов.

Contunico © ZDF Enterprises GmbH, Майнц См. Все видеоролики к этой статье

Хотя общее производство фотоэлектрической энергии незначительно, оно, вероятно, увеличится по мере сокращения ресурсов ископаемого топлива.Фактически, расчеты, основанные на прогнозируемом мировом потреблении энергии к 2030 году, предполагают, что глобальные потребности в энергии будут удовлетворяться за счет солнечных панелей, работающих с 20-процентной эффективностью и покрывающих всего около 496 805 квадратных километров (191 817 квадратных миль) поверхности Земли. Потребности в материалах будут огромными, но выполнимыми, поскольку кремний является вторым по распространенности элементом в земной коре. Эти факторы побудили сторонников солнечной энергии предвидеть будущую «солнечную экономику», в которой практически все потребности человечества в энергии будут удовлетворяться за счет дешевого, чистого, возобновляемого солнечного света.

Структура и работа солнечных элементов

Солнечные элементы, независимо от того, используются ли они в центральной электростанции, спутнике или калькуляторе, имеют одинаковую базовую структуру. Свет входит в устройство через оптическое покрытие или антиотражающий слой, который сводит к минимуму потери света на отражение; он эффективно улавливает свет, падающий на солнечный элемент, способствуя его передаче нижним слоям преобразования энергии. Антиотражающий слой обычно представляет собой оксид кремния, тантала или титана, который образуется на поверхности ячейки методом центрифугирования или вакуумного осаждения.

солнечная энергия; солнечная батарея

Солнечная энергетическая установка производит мегаватты электроэнергии. Напряжение генерируется солнечными элементами, изготовленными из специально обработанных полупроводниковых материалов, таких как кремний.

Предоставлено Национальной лабораторией возобновляемых источников энергии Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Три слоя преобразования энергии ниже антиотражающего слоя - это верхний переходной слой, абсорбирующий слой, составляющий сердцевину устройства, и задний переходный слой.Два дополнительных электрических контактных слоя необходимы для отвода электрического тока к внешней нагрузке и обратно в элемент, замыкая электрическую цепь. Электрический контактный слой на лицевой стороне ячейки, куда проникает свет, обычно присутствует в виде некоторой сетки и состоит из хорошего проводника, такого как металл. Поскольку металл блокирует свет, линии сетки должны быть настолько тонкими и широко разнесенными, насколько это возможно, без ухудшения сбора тока, производимого элементом. Задний электрический контактный слой не имеет таких диаметрально противоположных ограничений.Он должен просто функционировать как электрический контакт и, таким образом, покрывать всю заднюю поверхность ячеистой структуры. Поскольку задний слой также должен быть очень хорошим проводником электричества, он всегда выполняется из металла.

Поскольку большая часть энергии солнечного света и искусственного света находится в видимом диапазоне электромагнитного излучения, поглотитель солнечного элемента должен эффективно поглощать излучение на этих длинах волн. Материалы, которые сильно поглощают видимое излучение, относятся к классу веществ, известных как полупроводники.Полупроводники толщиной около одной сотой сантиметра или меньше могут поглощать весь падающий видимый свет; Так как переходные и контактные слои намного тоньше, толщина солнечного элемента по существу равна толщине поглотителя. Примеры полупроводниковых материалов, используемых в солнечных элементах, включают кремний, арсенид галлия, фосфид индия и селенид индия меди.

Когда свет падает на солнечный элемент, электроны в слое поглотителя переходят из «основного состояния» с более низкой энергией, в котором они связаны с определенными атомами в твердом теле, в более высокое «возбужденное состояние», в котором они может двигаться сквозь твердое тело.В отсутствие слоев, образующих переход, эти «свободные» электроны находятся в беспорядочном движении, и поэтому не может быть ориентированного постоянного тока. Однако добавление слоев, образующих переход, индуцирует встроенное электрическое поле, которое создает фотоэлектрический эффект. Фактически, электрическое поле обеспечивает коллективное движение электронам, которые проходят через слои электрического контакта во внешнюю цепь, где они могут выполнять полезную работу.

Материалы, используемые для двух слоев, образующих переход, должны отличаться от поглотителя, чтобы создавать встроенное электрическое поле и пропускать электрический ток.Следовательно, это могут быть разные полупроводники (или один и тот же полупроводник с разными типами проводимости), или они могут быть металлом и полупроводником. Материалы, используемые для создания различных слоев солнечных элементов, по существу те же, что и материалы, используемые для производства диодов и транзисторов твердотельной электроники и микроэлектроники ( см. Также Electronics: Optoelectronics). Солнечные элементы и микроэлектронные устройства используют одну и ту же базовую технологию. Однако при производстве солнечных элементов стремятся создать устройство большой площади, потому что вырабатываемая мощность пропорциональна освещенной площади.В микроэлектронике цель, конечно, состоит в создании электронных компонентов все меньших размеров, чтобы увеличить их плотность и скорость работы в полупроводниковых микросхемах или интегральных схемах.

Фотогальванический процесс имеет определенное сходство с фотосинтезом, процессом, с помощью которого энергия света преобразуется в химическую энергию в растениях. Поскольку солнечные элементы, очевидно, не могут производить электроэнергию в темноте, часть энергии, которую они вырабатывают при свете, сохраняется во многих приложениях для использования, когда свет недоступен.Одним из распространенных способов хранения этой электроэнергии является зарядка электрохимических аккумуляторных батарей. Эта последовательность преобразования энергии света в энергию возбужденных электронов, а затем в запасенную химическую энергию поразительно похожа на процесс фотосинтеза.

.

Поставщики и ресурсы беспроводной связи RF

О компании RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи. На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д.Эти ресурсы основаны на стандартах IEEE и 3GPP. В них также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Узнать больше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета. • Система измерения столкновения • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды • Система Smart Grid • Система умного освещения на базе Zigbee • Система интеллектуальной парковки на основе Zigbee. • Система интеллектуальной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Используемые в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в одном канале, ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G - Это руководство по 5G также охватывает следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Полосы частот руководство по миллиметровым волнам Волновая рамка 5G мм Зондирование волнового канала 5G мм 4G против 5G Тестовое оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP диапазона 70 МГц в диапазон C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF фильтра ➤VSAT Система ➤Типы и основы микрополосковой печати ➤Основы работы с волноводом


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи. Оптические компоненты INDEX >>
➤Учебник по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Рамочная конструкция ➤SONET против SDH


Поставщики и производители беспроводных радиочастотных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных компонентов, систем и подсистем RF для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, чип резистор, чип конденсатор, индуктор чипа, ответвитель, оборудование EMC, программное обеспечение RF Design, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здоровье населения *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: Часто мойте их.
2. КОЛЕНО: Откашляйтесь.
3. ЛИЦО: не трогайте его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, остановить распространение COVID-19, поскольку это заразное заболевание.


RF Калькуляторы и преобразователи беспроводной связи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Это касается беспроводных технологий, таких как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Различные типы датчиков


Поделиться страницей

Перевести страницу

.

Принцип работы и развитие солнечных батарей

Теплые подсказки: слово в этой статье составляет около 2600, а время чтения - около 15 минут.

Сводка

Из-за постоянной потребности человечества в возобновляемых источниках энергии люди стремятся к разработке новых источников. Энергия, которую солнце светит на поверхность Земли за 40 минут, может быть использована в течение одного года со скоростью текущего глобального потребления энергии. Разумное использование солнечной энергии станет долгосрочной стратегией развития человечества для решения энергетических проблем и также является одной из наиболее изученных горячих точек.В этой статье будут представлены различные типы новых солнечных элементов, а также принцип и развитие солнечных элементов. Заодно сравним эффективность конверсии и перспективы их развития.

Ядро статьи

Принцип работы и разработка солнечных батарей

Тип материала

Кремний, сложные полупроводники, органические материалы и т. Д.

Английское название

Солнечная батарея

Категория

Мощность, Энергия

Принцип

Фотоэлектрический эффект

Классифицировать

Кремниевые полупроводниковые батареи, сенсибилизированные красителями батареи и т. Д.


Каталоги

Каталоги

И.Фон солнечных батарей

4. Нанокристаллические солнечные элементы

3. SunCats

II. Типы солнечных элементов

5. Органические солнечные элементы

4. Солнечный свет

1. Кремниевый солнечный элемент

III.Необычные конструкции солнечных батарей

IV. Принцип работы солнечных элементов

2. Многокомпонентные тонкопленочные солнечные элементы

1. Электронный сберегательный аккумулятор

В. Фотоэлектрический эффект

3. Полимерный многослойный модифицированный электродный солнечный элемент

2.Складной фотоэлемент


Введение

Задний слой солнечной батареи

Энергетика - это не только базовая отрасль национальной экономики, но и высокотехнологичная отрасль. « Безопасный, эффективный и низкоуглеродный » воплощает в себе характеристики современных энергетических технологий, а также является основным направлением, позволяющим захватить командную высоту будущих энергетических технологий.

В настоящее время разработка новых источников энергии в основном сосредоточена на возобновляемых источниках энергии, таких как солнечная энергия, водородная энергия, энергия ветра и геотермальная энергия, среди которых ресурсы солнечной энергии многочисленны и широко распространены и являются наиболее многообещающими возобновляемыми источниками энергии. В связи с глобальным дефицитом энергии и проблемами загрязнения окружающей среды, такими как все более заметные проблемы, солнечная фотоэлектрическая энергия привлекла внимание всего мира и сосредоточила внимание на развитии новых отраслей промышленности из-за ее чистых, безопасных, удобных, эффективных и других характеристик.

С момента открытия французским ученым Э. Беккерелем в 1839 году фотоэлектрического эффекта жидкости (так называемого фотоэлектрического явления), солнечный элемент претерпел долгую историю развития, насчитывающую более 160 лет. Что касается общего развития, как фундаментальные исследования, так и технический прогресс сыграли положительную роль в их продвижении. Практическое применение солнечных элементов сыграло решающую роль с момента успешной разработки монокристаллических кремниевых солнечных элементов, сделанных тремя учеными из Bell Laboratories США, что является важной вехой в истории развития солнечных элементов.Пока что основная структура и механизм солнечных элементов не изменились.

Из-за постоянной потребности человечества в возобновляемых источниках энергии люди стремятся к разработке новых источников. Энергия, которую солнце светит на поверхность Земли за 40 минут, может использоваться в течение одного года со скоростью, соответствующей текущему глобальному потреблению энергии. Разумное использование солнечной энергии станет долгосрочной стратегией развития человечества для решения энергетических проблем, а также одной из наиболее изученных горячих точек исследований.В этой статье будут представлены различные типы новых солнечных элементов, а также принцип и развитие солнечных элементов. Заодно сравним эффективность конверсии и перспективы их развития.

II. Типы солнечных элементов

1. Кремниевый солнечный элемент

Кремниевые солнечные элементы подразделяются на солнечные элементы из монокристаллического кремния, тонкопленочные солнечные элементы из поликристаллического кремния и тонкопленочные солнечные элементы из аморфного кремния.

Солнечные элементы из монокристаллического кремния обладают эффективностью преобразования элементов, чья технология также является наиболее зрелой.Наивысшая эффективность преобразования в лаборатории составляет 24,7%, а производительность в масштабе производства составляет 15%. Он по-прежнему доминирует в крупномасштабных приложениях и промышленном производстве. Однако из-за дороговизны монокристаллического кремния резко удешевить его очень сложно. В целях экономии кремниевых материалов, поликристаллический кремний и пленка из аморфного кремния появились как заменители монокристаллических кремниевых солнечных элементов.

По сравнению с монокристаллическим кремнием, тонкопленочный солнечный элемент из поликристаллического кремния имеет более низкую стоимость.Между тем, он имеет более высокий КПД, чем тонкопленочный элемент из аморфного кремния. Его самая высокая эффективность преобразования составляет 18% в лабораторных условиях и 10% в промышленных масштабах. В результате поликристаллические кремниевые тонкопленочные батареи скоро будут доминировать на рынке солнечной энергии.

Тонкопленочные солнечные элементы из аморфного кремния обладают большим потенциалом благодаря низкой стоимости, высокой эффективности преобразования и простоте массового производства. Однако из-за эффекта спада фотоэлектрической эффективности, вызванного материалом, стабильность невысока, что напрямую влияет на его практическое применение.Если мы сможем решить проблему стабильности и улучшить коэффициент конверсии, то солнечные элементы из аморфного кремния, несомненно, станут одним из основных направлений развития солнечных элементов.

2. Многокомпонентные тонкопленочные солнечные элементы

Материалом многосоставных тонкопленочных солнечных элементов являются неорганические соли, включая соединения арсенида галлия III-V, сульфид кадмия, сульфид кадмия и тонкопленочный элемент из окклюдированного медью селена.

Поликристаллические тонкопленочные элементы из сульфида кадмия и теллурида кадмия обеспечивают более высокую эффективность, чем тонкопленочные солнечные элементы из аморфного кремния, более низкую стоимость, чем элементы из монокристаллического кремния, а также просты в массовом производстве.Однако кадмий очень токсичен, что приведет к серьезному загрязнению окружающей среды; Следовательно, это не идеальная замена солнечным элементам из кристаллического кремния.

Эффективность преобразования составных элементов GaAs III-V может достигать 28%. Соединения GaAs имеют очень хорошую оптическую запрещенную зону и высокую эффективность поглощения. Они обладают сильной антирадиационной способностью и нечувствительны к нагреву, что подходит для производства высокоэффективных однопереходных элементов.Однако цена материалов на основе GaAs высока, что в значительной степени ограничивает популярность ячеек на основе GaAs.

Тонкопленочные элементы из селенида меди и индия (называемые CIS) подходят для фотоэлектрического преобразования. Проблем фото деградации нет. У них такая же эффективность преобразования, как у поликремния. Благодаря низким ценам, хорошей производительности, простоте процесса и т. Д. СНГ станет важным направлением будущего развития солнечных элементов. Единственная проблема - это источник материала, поскольку индий и селен являются относительно редкими элементами, поэтому разработка таких батарей должна быть ограничена.

3. Полимерный многослойный модифицированный электродный солнечный элемент

Замена неорганических материалов органическими полимерами - это исследовательское направление недавно начатого производства солнечных элементов. Обладая такими преимуществами, как хорошая гибкость, простота изготовления, широкий спектр источников материалов и низкая стоимость, органические материалы имеют большое значение для крупномасштабного использования солнечной энергии и обеспечения недорогой электроэнергии. Тем не менее, исследования по производству солнечных элементов из органических материалов только начались, их срок службы и эффективность батарей несравнимы с неорганическими материалами, особенно с кремниевыми элементами.Вопрос о том, можно ли из него превратить в практический продукт, еще предстоит изучить.

4. Нанокристаллические солнечные элементы

Нанокристаллический TiO 2 Химия Солнечный элемент - это недавно разработанный продукт. Его преимущества включают невысокую стоимость, простой процесс и стабильную работу. В то же время его фотоэлектрическая эффективность стабильна на уровне выше 10%, а стоимость производства составляет от 1/5 до 1/10 от кремниевого солнечного элемента, а срок его службы может достигать более 20 лет.

Однако, поскольку исследования и разработки таких элементов только начались, предполагается, что в ближайшем будущем на рынок постепенно выйдут нанокристаллические солнечные элементы.

5. Органические солнечные элементы

Органические солнечные элементы, как следует из названия, представляют собой солнечные элементы, которые образуют органические материалы. Мы не знакомы с органическими солнечными элементами, что вполне разумно. Более 95% современных солнечных элементов основаны на кремнии, а менее 5% остальных солнечных элементов сделаны из других неорганических материалов.

Вот таблица эффективности преобразования различных типов солнечных элементов:

Типы солнечных батарей

Солнечные элементы из кристаллического кремния

Тонкопленочный солнечный элемент

Кремний монокристаллический

кремний поликристаллический

CdTe

СНГ

A-Si

MC-Si

Эффективность промышленного производства

19.6%

18,5%

11,1%

12%

7%

9%

Достижимые цели эффективности

> 20%

20%

18%

18%

10%

15%


Деталь

III.Необычные конструкции солнечных батарей

1. Электронный сберегательный аккумулятор

E-Saving Battery имеет идеальный баланс площади солнечных элементов (эффективность выработки электроэнергии) и портативности. Этот продукт не сильно отличается от обычного портативного пауэрбанка. Он по-прежнему имеет форму колонны и выводится через USB-порт, но он имеет встроенные гибкие солнечные элементы, при необходимости удерживающие заднюю часть стержня, и вы можете вытащить солнечный элемент, как катушку, чтобы получить максимальную световую площадь. таким образом повышается эффективность выработки электроэнергии.В мирное время тоже можно поставить панель, что и удобно, и не занято.

2. Складной фотоэлемент

В E-сберегающем аккумуляторе мы упомянули гибкий солнечный элемент, который можно свернуть. Тогда можно ли свернуть солнечную батарею? Еще в 2009 году американец по имени Фредерик Кребс создал солнечную пленку, которую можно скручивать или выпрямлять, к которой даже прикрепили ультратонкую литиевую батарею и светодиод. В течение дня вы можете выпрямить его и прикрепить к стене, и он сможет преобразовывать солнечную энергию в электричество и накапливать.вечером можно поставить в доме как комнатное освещение. При желании его также можно свернуть в трубку как фонарик. Согласно видению Кребса, стоимость каждой из них будет меньше 7 долларов США при окончательном массовом производстве такой солнечной светодиодной пленки.

3. SunCats

SunCats - это дизайн Кнута Карлсена. На самом деле, это больше похоже на солнечную наклейку, чем на солнечный элемент, который эквивалентен солнечным элементам, прикрепленным к поверхности обычной аккумуляторной батареи.Поэтому, когда он выключен, бросьте его на подоконник и дайте ему поймать немного солнечного света.

4. Солнечный свет

Солнечный свет разработан немецким дизайнером Германом Эске. Основной корпус sunLight - это солнечная панель, которую можно свернуть вместе. Помимо прямой зарядки электроники, как у большинства солнечных устройств, у него есть и другие особые функции. Если вы посмотрите на него крупным планом, вы обнаружите, что он выглядит немного иначе. Сзади шесть полых цилиндров.Все загадки скрываются в этих цилиндрах, любой из которых можно представить как небольшой светодиодный фонарик, питаемый от двух встроенных аккумуляторных батарей AAAA и свернутый как мощный фонарик с шестью светодиодами.

IV. Принцип работы солнечных элементов

Солнечные элементы, тип полупроводникового устройства, которое эффективно поглощает солнечное излучение и преобразует его в электрическую энергию, также известны как фотоэлектрические элементы из-за их фотоэлектрического эффекта , использующего различные потенциальные барьеры.Ядром этих устройств является полупроводник с высвобождением электронов. Наиболее часто используемый полупроводниковый материал - кремний. Поскольку запасы кремния в земной коре богаты, можно сказать, что он неисчерпаем. Когда солнечный свет освещает поверхность полупроводника, валентные электроны атомов в N- и P-областях полупроводника возбуждаются солнечными фотонами, а энергия, превышающая ширину запрещенной зоны Eg, получается путем оптического облучения. Таким образом, в зоне проводимости образуется множество электронно-дырочных пар, находящихся в несбалансированном состоянии в полупроводниковом материале.Эти фотовозбужденные электроны и дырки свободно сталкиваются или рекомбинируют в полупроводнике до состояния равновесия. Композитный процесс не проявляет внешнего проводящего эффекта. Это часть автоматической потери энергии солнечных элементов. Небольшое количество носителей в фотовозбужденных носителях может перемещаться в область P-N-перехода и дрейфовать в противоположную область через эффект притяжения неосновных носителей P-N-перехода, при этом формируется противоположное направление, противоположное электрическому полю фотоэлектрического поля барьера P-N перехода.После подключения к внешней цепи вы можете получить выходную мощность. Когда большое количество таких небольших солнечных фотоэлектрических элементов объединяется последовательно и параллельно, чтобы сформировать модуль фотоэлектрических элементов, под действием солнечной энергии выдается достаточно большая электрическая мощность. Важно, чтобы полупроводниковые материалы для солнечных элементов имели подходящую ширину запрещенной зоны. Полупроводник с разной шириной запрещенной зоны поглощает только часть энергии солнечного излучения для генерации электронно-дырочных пар. Чем меньше ширина запрещенной зоны, тем больше доступная часть солнечного спектра, которая будет поглощена, и в то же время количество потраченной впустую энергии будет больше вблизи пиков солнечного спектра.Видно, что более эффективно использовать солнечный спектр можно только путем выбора полупроводниковых материалов с подходящей шириной запрещенной зоны. Поскольку полупроводник с прямым переносом имеет более высокую эффективность поглощения света, чем полупроводник с непрямым переносом, предпочтительно, чтобы он был полупроводником с прямым переносом.


Анализ

В. Фотоэлектрический эффект

Как уже упоминалось выше, здесь нам нужно объяснить фотоэлектрический эффект.

Вот видео о фотоэлектрическом эффекте:

Доцент кафедры материаловедения и инженерии Джефф Гроссман объясняет фотоэлектрические элементы / солнечные элементы

Так называемый фотогальванический эффект - это когда объект освещается, распределение заряда в пределах изменения состояния объекта влияет на электродвижущую силу и ток. Когда солнечный свет или другой свет попадает на PN-переход полупроводника, по обе стороны от PN-перехода появляется напряжение, которое называется фотоиндуцированным напряжением.

Когда свет попадает на PN-переход, генерируется электронно-дырочная пара. Носители, генерируемые вблизи PN-перехода в полупроводнике, не рекомбинируются для достижения области пространственного заряда. Из-за притяжения внутреннего электрического поля электрон течет в N-область, а дырка - в P-область. В результате избыточные электроны накапливаются в области N, а избыточные дырки присутствуют в области P. Они образуют фотогенерируемое электрическое поле напротив барьера вблизи p-n-перехода.В дополнение к частичному противодействию роли электрического поля потенциального барьера, фотогенерируемое электрическое поле также делает P-область положительной, а N-область - отрицательной. Затем создает электродвижущую силу между тонким слоем в области N и P, что является фотоэлектрическим эффектом.


Рекомендация книги

Эта книга представляет собой всестороннее введение в физику фотоэлементов. Он подходит для студентов, аспирантов и исследователей, плохо знакомых с этой областью.Он охватывает: основы физики полупроводников в фотоэлектрических устройствах; физические модели работы солнечных элементов; характеристики и конструкция распространенных типов солнечных элементов; и подходы к повышению эффективности солнечных элементов. В тексте объясняются термины и концепции физики устройств на солнечных элементах и ​​показано, как формулировать и решать соответствующие физические проблемы. Включены упражнения и отработанные решения. Содержание: Фотоны входят, электроны выходят: основные принципы фотоэлектрической системы; Электроны и дырки в полупроводниках; Генерация и рекомбинация; Узлы; Анализ p n перехода; Монокристаллические солнечные элементы; Тонкопленочные солнечные элементы; Управляющий свет; Превышение предела: стратегии повышения эффективности.

- Дженни Нельсон (автор)

В основном книги сосредоточены на кремниевых однопереходных устройствах, но также описаны некоторые полупроводники III-V. В основном освещается физика солнечных элементов, но есть некоторая информация по практическим вопросам установки.

- Мартин А. Грин (автор)


Актуальная информация по теме "Принцип работы и разработка солнечных батарей"

О статье «Принцип работы и развитие солнечных батарей», Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

.

Как сделать простой солнечный элемент? Работа фотоэлектрического элемента

Как построить простой солнечный элемент? (Шаг за шагом) | Основной принцип работы фотоэлектрического элемента

Введение в солнечные элементы или фотоэлектрические элементы

Солнечный элемент (или фотоэлектрический элемент ) представляет собой устройство, которое производит электрический ток химическим действием или преобразованием света. к электрическому току при воздействии солнечных лучей.В данной статье мы остановимся только на солнечных элементах.

Также читайте

Солнечный элемент также известен как фотоэлектрический элемент, который вырабатывает электрический ток, когда поверхность подвергается воздействию солнечного света. В ходе этой статьи мы будем ссылаться на солнечный свет как на электромагнитное излучение (ЭМ-излучение).

В солнечных элементах количество электроэнергии, генерируемой элементами, зависит от интенсивности электромагнитного излучения, которое достигает поверхности элемента.Солнечный элемент преобразует электромагнитное излучение в постоянный ток. Таким образом, мы можем сказать, что солнечный элемент - это устройство с полупроводниковым соединением, которое преобразует поступающее к нам электромагнитное излучение от солнца в электрическую энергию. Как указано выше, генерируемый ток является постоянным.

Основной принцип работы фотоэлектрического / солнечного элемента

Принцип работы солнечного элемента аналогичен проводимости в полупроводнике, таком как кремний. Как видно на картинке, темная поверхность - это часть, подверженная воздействию солнечного света.Когда электромагнитное излучение попадает на поверхность клетки, оно возбуждает электроны и заставляет их перепрыгивать с одного энергетического уровня (орбиты) на другой, оставляя дыры позади.

Эти дырки служат носителями положительного заряда, а электроны - носителями отрицательного заряда. Не запутайтесь, электроны или дырки не создают электрические заряды. Они несут только обвинения. При этом электромагнитное излучение преобразуется в электрическую энергию. Солнечные элементы сделаны в основном из полупроводников, таких как кремний и селен, которые наиболее широко используются.

Чтобы лучше понять это, давайте посмотрим на различные типы полупроводниковых материалов, поскольку материалы, широко используемые в производстве солнечных элементов, являются полупроводниками.

Типы полупроводников

У нас есть два типа полупроводников: внутренние и внешние полупроводники.

Внутренние полупроводники :

Эти полупроводники являются чистыми по своей форме. Никаких примесей для улучшения их проводимости не добавляется.Полупроводники этого типа при нулевом градусе Цельсия имеют очень мало или совсем не имеют свободных дырок и электронов для проводимости.

Внешние полупроводники :

Эти типы полупроводников не являются чистыми в том смысле, что они легированы (вещества, которые служат в качестве примесей, добавляются для увеличения их проводимости). Когда полупроводник легирован, обнаруживаются следующие материалы;

  • Полупроводники P-типа

    Этот вид полупроводников образуется, когда кремний, селен или германий легируют трехвалентным элементом (элементом с тремя валентными электронами), например бором.Дырки (носители положительного заряда) являются основными носителями заряда в полупроводниках этого типа.

  • Полупроводники N-типа

    Электроны являются основными носителями заряда в этом типе полупроводников. Они несут отрицательный заряд. Они образуются, когда кремний или любой другой полупроводник легируют пятивалентным элементом (элементом с пятивалентным электроном на внешней оболочке).

  • PN - Тип полупроводников

    Когда полупроводники типа P и N соединяются путем их плавления I.е. подвергая соприкасающиеся поверхности воздействию высокой температуры (не плавя их полностью, чтобы они образовывали единое целое), между ними образуется граница или стык размером порядка 10 - 3 мм. Образовавшийся переход называется PN переходом. Высокая концентрация дырок на одной стороне перехода и высокая концентрация электронов на другой стороне заставляет два носителя заряда диффундировать соответственно к другой стороне перехода.

Как построить простой фотоэлектрический / солнечный элемент?

Кремний и селен - наиболее широко используемые полупроводники в производстве солнечных элементов.Галлий, арсенид, арсенид индия, сульфид кадмия и т. Д. Также используются, но наиболее широко используются кремний и селен.

Зная, что полупроводниковые материалы, такие как кремний и селен, могут быть довольно дорогими, мы поговорим о том, как построить солнечный элемент с использованием таких материалов, как кремний, а также о том, как построить солнечный элемент из дешевых материалов, которые можно найти вокруг нас.

Обратите внимание, что использование дешевых материалов не даст эквивалентной выходной мощности по сравнению с кремнием или селеном, и, во-вторых, чем больше поверхность материала, подверженного электромагнитному излучению, тем больше энергии будет произведено.

Конструкция солнечного элемента с использованием кремниевого полупроводника

Как было сказано ранее, поверхность представляет собой материал P-типа. Материал P-типа должен быть тонким, чтобы световая энергия (электромагнитное излучение) могла проникать через переход и достигать материала N-типа, чтобы обеспечить диффузию электронов и дырок.

Никелированное кольцо вокруг материала P-типа служит положительной выходной клеммой, в то время как покрытие в нижней части материала N-типа служит отрицательной выходной клеммой.

Как построить простой солнечный элемент? (Шаг за шагом)

Теперь, когда вы знаете, как производятся солнечные элементы с использованием кремния, давайте посмотрим, как мы можем изготовить фотоэлектрический элемент, используя различные материалы. Вместо закиси меди мы будем использовать другие материалы. Необходимые материалы следующие:

  • Стеклянные пластины (например, крышки предметных стекол микроскопа)
  • Деионизированная вода
  • Мультиметр
  • Прозрачная лента
  • Плоская тарелка
  • Электрическая плита (1100 Вт, если возможно)
  • Раствор диоксида титана
  • Углерод (графитовый карандаш или графит) смазка)
  • Раствор йодида
  • Зажимы для связующего
  • Зажимы типа «крокодил»

В нашей последней работе материал P-типа обращен к солнцу и является более проводящим по сравнению с материалом N-типа.Стекло - это полупроводник с частичной проводимостью. Чтобы одна из стеклянных пластин действовала как материал P-типа, а другая - как материал N-типа, вы должны обработать их химикатами, чтобы в конце одна из них была более проводящей, чем другая. Шаги следующие.

  1. Тщательно очистите поверхности двух стеклянных пластин этанолом. Не касайтесь поверхности стеклянных пластин руками после очистки.
  2. Используя миллиметр, проверьте, насколько проводящей является поверхность пластин, и обратите внимание на самую проводящую поверхность каждой из пластин.Поместите пластины бок о бок так, чтобы проводящая поверхность одной из пластин была обращена вниз, а другая проводящая поверхность была обращена вверх.
  3. После шага 2 приклейте прозрачную ленту, чтобы скрепить стеклянные пластины. Ленту следует наклеивать по любой из длинных сторон пластин. Лента должна перекрывать края примерно на 1 мм. Также поместите ленту на внешнюю часть стеклянной пластины, обращенной вверх на 4–5 мм.
  4. Равномерно нанесите капли диоксида титана на поверхность стеклянных пластин и равномерно распределите раствор.Позвольте раствору покрыть проводящую поверхность, обращенную вниз.
  5. Когда закончите с нанесением диоксида титана, удалите ленты, которые скрепляют пластины.
  6. Поместите проводящую поверхность, обращенную вверх, на электрическую плитку на ночь, чтобы на ней запекался диоксид титана. Очистите диоксид титана, который находится на проводящей поверхности лицевой стороной вниз, и поместите его в чистое место.
  7. Возьмите неглубокую посуду и наполните ее краской, приготовленной из ежевичного, малинового или гранатового сока и т. Д.Замочите пластину с покрытием из диоксида титана, обращенную вниз, как минимум на 10 минут.
  8. Очистите вторую пластину этанолом, пока пластина из диоксида титана пропитывается красителем. После очистки проверьте проводимость его поверхности. Отметьте сторону, которая не проводит электрический ток, как положительную. Нанесите графитовую смазку или графитовый карандаш на проводящую сторону и покройте всю поверхность.
  9. Извлеките из красителя пластину, покрытую диоксидом титана. Промойте сначала деионизированной водой, затем этанолом.Вытрите этанол с пластины чистой тканью.
  10. Соберите две пластины вместе так, чтобы покрытия касались друг друга, а пластины были слегка смещены. Удерживайте пластины на месте с помощью зажимов. Они должны быть смещены, потому что края будут служить выводами.
  11. Нанесите капли раствора йодида на покрытие, на которое попадает солнечный свет. Дайте покрытиям полностью погрузиться в раствор. Суть раствора йодида состоит в том, чтобы помочь электронам течь от пластины, покрытой диоксидом титана, к покрытой углеродом пластине при воздействии электромагнитного излучения.Если раствор йодида в избытке, сотрите раствор с поверхности, которая будет подвергаться воздействию солнечных лучей.
  12. Прикрепите зажим «крокодил» или зажим «крокодил» к участкам покрытой поверхности по обе стороны от ячейки. Один зажим прикреплен к поверхности, покрытой графитом, который служит опорой, в то время как зажим из кожи аллигатора прикреплен к поверхности, покрытой диоксидом титана. Это, конечно, катод. Подсоедините токопроводящие провода к зажимам и поместите его так, чтобы свет падал на поверхность пластины.Ваш фотоэлемент готов к работе. Вы можете проверить количество напряжения и тока, которые производит солнечный элемент, с помощью мультиметра. Очевидно, что напряжения недостаточно для зарядки телефона, но для этого вы можете сделать цепочку из этих солнечных элементов!

Преимущества использования солнечных батарей

Ниже приведены преимущества использования солнечных батарей:

  • Не производит шума
  • Не требует топлива для питания
  • Его движение энергия бесплатна по своей природе
  • Не требует особого обслуживания

Недостатки использования солнечных элементов

Недостатки использования солнечных элементов

  • Поверхность элемента должна быть большой, чтобы производить разумное количество электроэнергии .
  • Когда солнце скрывается в облаках, количество вырабатываемой энергии сокращается.
  • Их нельзя использовать в качестве источника энергии из-за колебаний количества вырабатываемой энергии.

Применение и использование солнечных элементов

Солнечные элементы имеют множество применений, несмотря на его недостатки, а именно:

  • Группа последовательно соединенных солнечных элементов может использоваться в качестве зарядного устройства для батарей
  • Они являются широко используется в качестве источника питания для спутников
  • Многоблочные кремниевые фотоэлектрические устройства могут использоваться для восприятия света в таких приложениях, как считывание перфокарт в промышленности обработки данных
  • Германиевые элементы, легированные золотом, с контролируемой спектральной характеристикой могут использоваться в качестве инфракрасных детекторов .

Вы также можете прочитать:

Введите адрес электронной почты для получения последних обновлений, подобных указанному выше!

.

Принципы проектирования солнечных элементов | PVEducation

Конструкция солнечного элемента включает в себя определение параметров структуры солнечного элемента для максимального повышения эффективности с учетом определенного набора ограничений. Эти ограничения будут определяться рабочей средой, в которой производятся солнечные элементы. Например, в коммерческой среде, где целью является производство солнечного элемента по конкурентоспособной цене, необходимо учитывать стоимость изготовления конкретной конструкции солнечного элемента.Однако в исследовательской среде, где целью является создание высокоэффективной ячейки лабораторного типа, главным соображением является максимизация эффективности, а не стоимости.

Эволюция эффективности кремниевых солнечных элементов.

Теоретическая эффективность фотоэлектрического преобразования превышает 86,8%. Однако цифра 86,8% основана на подробных расчетах баланса и не описывает реализацию устройства. Для кремниевых солнечных элементов более реалистичный КПД при работе на одном солнце составляет около 29%.Максимальная эффективность кремниевого солнечного элемента в настоящее время составляет 24,7% при AM1,5G. Разница между высокой теоретической эффективностью и эффективностью, измеренной на земных солнечных элементах, в основном объясняется двумя факторами. Во-первых, теоретические прогнозы максимальной эффективности предполагают, что энергия каждого фотона используется оптимально, что нет непоглощенных фотонов и что каждый фотон поглощается материалом, ширина запрещенной зоны которого равна энергии фотона. Теоретически это достигается путем моделирования бесконечного набора солнечных элементов из различных материалов запрещенной зоны, каждый из которых поглощает только фотоны, которые точно соответствуют его ширине запрещенной зоны.

Второй фактор заключается в том, что прогнозы высокой теоретической эффективности предполагают высокий коэффициент концентрации. Если предположить, что температура и резистивные эффекты не преобладают в солнечном элементе-концентраторе, увеличение интенсивности света пропорционально увеличивает ток короткого замыкания. Поскольку напряжение холостого хода (V oc ) также зависит от тока короткого замыкания, V oc увеличивается логарифмически с уровнем освещенности. Кроме того, поскольку максимальный коэффициент заполнения (FF) увеличивается с V oc , максимально возможный FF также увеличивается с концентрацией.Дополнительный V oc и FF увеличивается с концентрацией, что позволяет концентраторам достигать более высокой эффективности.

При проектировании такого сингла jun

.

Принцип солнечной батареи | О солнечной энергии | Наш дух солнечной энергии | Солнечная энергия | Продукция

Преобразование солнечного света в электричество

Солнечная батарея
(кремний мультикристаллический)
Фотоэлектрические модули, обычно называемые солнечными модулями, являются ключевыми компонентами, используемыми для преобразования солнечного света в электричество. Солнечные модули сделаны из полупроводников, которые очень похожи на те, которые используются для создания интегральных схем для электронного оборудования.Наиболее распространенный тип полупроводников, используемых в настоящее время, состоит из кристаллов кремния. Кристаллы кремния разделены на слои n-типа и p-типа, уложенные друг на друга. Свет, падающий на кристаллы, вызывает «фотоэлектрический эффект», который генерирует электричество. Произведенное электричество называется постоянным током (DC), и его можно использовать немедленно или хранить в батарее. Для систем, установленных в домах, обслуживаемых коммунальной сетью, устройство, называемое инвертором, преобразует электричество в переменный ток (AC), стандартную мощность, используемую в жилых домах.

Производство электроэнергии с использованием шлюза P-N
Кристаллы кремния высокой чистоты используются для производства солнечных элементов. Кристаллы перерабатываются в солнечные элементы методом плавления и литья. Затем отливку кубической формы разрезают на слитки, а затем нарезают очень тонкими пластинами.

Обработка пластин
Атомы кремния имеют четыре «руки». В стабильных условиях они становятся идеальными изоляторами.Объединив небольшое количество пятиконечных атомов (с избыточным электроном), возникнет отрицательный заряд, когда солнечный свет (фотоны) попадет на избыточный электрон. Затем электрон разряжается из плеча и свободно перемещается. Кремний с такими характеристиками проводит электричество. Это называется полупроводником n-типа (отрицательным) и обычно возникает из-за того, что кремний «легирован» фосфорной пленкой.

Напротив, объединение трехрукавных атомов, у которых отсутствует один электрон, приводит к образованию дырки с отсутствующим электроном.Тогда полупроводник будет нести положительный заряд. Это называется полупроводником p-типа (положительным), и обычно его получают, когда бор вводится в кремний.


p-n-переход формируется путем размещения полупроводников p-типа и n-типа рядом друг с другом. P-тип с одним электроном меньше, притягивает излишки электронов n-типа, чтобы стабилизироваться. Таким образом, электричество вытесняется и генерирует поток электронов, также известный как электричество.

Когда солнечный свет попадает на полупроводник, возникает электрон, который притягивается к полупроводнику n-типа. Это вызывает больше негативов в полупроводниках n-типа и больше плюсов в p-типе, тем самым генерируя больший поток электричества. Это фотоэлектрический эффект.




Региональные офисы

Связанная информация

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.