Главная » Разное » Расчет двутавровой балки на прогиб
Расчет двутавровой балки на прогиб
Таблица нагрузки на двутавровую балку: расчет нагрузки на прогиб
Двутавр – вид фасонного металлопроката, способный принимать большие нагрузки, по сравнению с уголком и швеллером. В частном строительстве металлопрокат с сечением Н-образного профиля используется только при создании крупногабаритных строений. Для выбора подходящего номера двутавровой балки производят профессиональные расчеты на прочность и прогиб с помощью формул или с использованием онлайн-калькулятора. Исходными данными являются: длина пролета, тип закрепления балки, характер нагрузки, планируемый шаг размещения профильного проката, наличие или отсутствие дополнительных опор, марку стали.
Выбор типа балки, в зависимости от запланированных нагрузок
Производители предлагают металлические двутавры с несколькими типами поперечного сечения, предназначенные для различных эксплуатационных условий. Такая продукция, в зависимости от типа сечения, может применяться в крупногабаритном жилищном строительстве, при возведении зданий промышленного и гражданского назначения, в мостостроении. Для каждого из них в соответствующем стандарте имеется таблица, в которой указаны размерные параметры, масса 1 м, момент и радиус инерции, момент сопротивления. Эти характеристики используются в расчетах на прогиб и прочность.
С уклоном внутренних граней полок 6-12 %
Производство этого металлопроката регламентируется ГОСТом 8239-89. Благодаря скруглению внутренних граней около стенки, обладают высокой прочностью и устойчивостью к прилагаемым усилиям.
С параллельными внутренними гранями полок
Эта продукция выпускается в соответствии с ГОСТом 26020-83, выделяют следующие типы:
Б – нормальный. Применяется для эксплуатации под средними нагрузками.
Ш – широкополочный. Может использоваться для разрезки по продольной оси для получения таврового профиля. Тавр укладывается на один пролет. Целый двутавровый профиль – на один или несколько пролетов. Эти металлоизделия очень массивны. Плюсом их использования является возможность использования в качестве самостоятельного элемента без применения усиливающих деталей.
К – колонный. Это наиболее массивные профили. Имеют широкие, утолщенные полки и стенки. Применяются при устройстве большепролетных конструкций.
Типовые схемы расположения двутавра
Один из исходных параметров, учитываемых в расчетах, – схема закрепления балки и вид прилагаемой нагрузки. Большинство вариантов сводится к основным схемам:
Сбор нагрузок
Перед началом расчета производят сбор сил, действующих на двутавровую балку. В зависимости от продолжительности воздействия,их разделяют на временные и постоянные.
Таблица нагрузок на двутавровые балки
Постоянные
Собственная масса балки и перекрытия. В упрощенном варианте вес межэтажного перекрытия без цементной стяжки с учетом массы балки принимают равным 350 кг/м2, с цементной стяжкой – 500 кг/м2
Длительные
Полезные
Зависят от назначения здания
Кратковременные
Снеговые, зависят от климатических условий региона
Особые
Взрывные, сейсмические. Для балок, работающих в стандартных эксплуатационных условиях, не учитываются. В онлайн-калькуляторах обычно не учитываются
Нагрузки разделяют на нормативные и расчетные. Нормативные устанавливаются строительными нормами и правилами. Расчетные равны нормативной величине, умноженной на коэффициент надежности. При усилии менее 200 кг/м2 коэффициент обычно принимают равным 1,3, при более 200 кг/м2 – 1,2. Шаг между балками принимают равным 1 м. В некоторых случаях, если это допустимо в конкретных эксплуатационных условиях, в целях экономии материалов его принимают равным 1,1 или 1,2 м.
При расчетах принимают во внимание марку стали. Для использования в условиях высоких нагрузок и при минусовых температурах востребованы двутавровые балки, изготовленные из низколегированных сталей.
Наиболее точным вариантом подбора номера и типа двутаврового профиля является проведение профессиональных расчетов. Именно этот способ применяется при проектировании ответственных крупногабаритных объектов. При строительстве небольших зданий можно воспользоваться онлайн-калькулятором.
Совет! По результатам расчетов онлайн-калькуляторы обычно предлагают два или более вариантов профиля. Для обеспечения надежности строения рекомендуется отдавать предпочтение профилю с большим номером.
Для примерного определения размера профиля можно воспользоваться таблицей соответствия номера двутавровой балки максимально допустимой нагрузке:
Общая нагрузка, кг/м2
Длина пролета
3 м при шаге, м
4 м при шаге, м
6 м при шаге, м
1,0
1,1
1,2
1,0
1,1
1,2
1,0
1,1
1,2
300
10
10
10
10
12
12
16
16
16
400
10
10
10
12
12
12
20
20
20
500
10
12
12
12
12
12
20
20
20
Из этой таблицы видно, что для двутавровой балки номер 10 максимальная длина пролета составляет 4 м при шаге 1,2 м, нагрузка – 400 кг/м2, для номера 16 длина пролета может достигать 6 м, нагрузка, которую он может выдержать, – 300 кг/м2, для профиля 20 – 6 м и нагрузка 400 кг/м2.
Расчет прогиба балки онлайн калькулятор. Площадь поперечного сечения профиля. Расчет на прочность.
Описание
При выборе схемы с распределенной нагрузкой, приложенная "Нагрузка Q" указывается как относительная "килограмм на метр". Определяется она по формуле Q = [общяя нагрузка, кг]/[общая длина, м].
Использование калькулятора "Расчет прогиба балки онлайн" значительно сократит время и послужит залогом надежных инженерных конструкций.
Калькулятор разработан исключительно по формулам Сопромата и справочным данным для каждого типа материала и сечения балки. Расчет прогиба сечения является теоретическим, следовательно практические значения могут быть отличными от расчетных и зависеть от множества условий. Однако значения полученные в данном калькуляторе будут невероятно полезными и послужат основой для расчета необходимой конструкции.
Для быстрого доступа к расчетам необходимого профиля добавьте калькулятор в избранное (CTRL+D на ПК или значек "звездочка" справа вверху браузера)
Таблицы расчета перекрытий
Расчет балок перекрытия
Расчет деревянных балок перекрытия в доме ведется по II предельному состоянию (по прогибам). Относительный прогиб 1/250 (по СНиП "Нагрузки и воздействия"). На практике это говорит о том, что балка перекрытия при нагружении ее равномерно распределенной нагрузкой 400 кг/м2 или 250, 200 кг/м2 в отдельных случаях, прогнется в центре на величину равную L/250, где L - расчетная длина балки (расстояние в свету между опорами).
Например, если расчетная длина балки 6 м (6000 мм), то прогиб в центре при максимальной нагрузке будет 6000/250 = 24 мм. Т.е. в данном примере 24 мм - максимально допустимый прогиб балки, при котором возможна комфортная эксплуатация перекрытия - не будет вибраций, скрипов, ощущения "батута".
Ниже приведены таблицы соотношения типа двутавровых балок, шага их установки, расчетной нагрузки и максимального пролета, при которых выполняются данные условия.
Примечания:
Балки серии W изготавливаются длиной 6 метров. Максимальный пролет, который они перекрывают 5,8м (при минимальном опирании 100 мм с двух сторон)
Балки серии L изготавливаются длиной до 13,5 метров.
Рекомендуемые шаги - 0,4 и 0,6 м для межэтажных перекрытий; 0,6 и 0,8 для чердачных перекрытий.
Максимальный пролет - расстояние "в свету" между соседними опорами.
Шаг балок - межосевое расстояние двух соседних балок.
Таблица расчета балок межэтажного и цокольного перекрытия
Расчет нагрузки 400 кг/м2 для деревянных перекрытий
Высота балки, мм
Тип балок / шаг балок
Максимальные пролеты, м
0,3
0,4
0,5
0,6
240
Балка ICJ-240W
4,95
4,50
4,16
3,93
300
Балка ICJ-300W
5,80
5,35
4,96
4,70
360
Балка ICJ-360W
5,80
5,80
5,75
5,38
400
Балка ICJ-400W
5,80
5,80
5,80
5,80
240
Балка ICJ-240L
5,45
4,95
4,55
4,30
240
Балка ICJ-240L с полкой 89 мм
6,05
5,50
5,10
4,80
300
Балка ICJ-300L
6,50
5,90
5,45
5,15
300
Балка ICJ-300L с полкой 89 мм
7,20
6,55
6,10
5,75
360
Балка ICJ-360L
7,45
6,75
6,30
5,90
360
Балка ICJ-360L с полкой 89 мм
8,30
7,50
7,00
6,60
400
Балка ICJ-400L
8,10
7,35
6,80
6,40
400
Балка ICJ-400L с полкой 89 мм
9,00
8,15
7,50
7,10
460
Балка ICJ-460L
9,00
8,15
7,50
7,10
460
Балка ICJ-460L с полкой 89 мм
10,00
9,05
8,40
7,90
500
Балка ICJ-500L
9,60
8,70
8,05
7,60
500
Балка ICJ-500L с полкой 89 мм
10,60
9,60
8,95
8,40
600
Балка ICJ-600L
11,00
9,95
9,25
8,70
600
Балка ICJ-600L с полкой 89 мм
12,00
11,00
10,20
9,60
Таблица расчета балок чердачного не эксплуатируемого перекрытия
Расчет для нагрузки 200 кг/м2 без нагрузки на деревянные перекрытия от стропильной системы
Высота балки, мм
Тип балок / шаг балок
Максимальные пролеты, м
0,4
0,5
0,6
0,7
0,8
240
Балка ICJ-240W
5,65
5,52
4,95
4,68
4,50
300
Балка ICJ-300W
5,80
5,80
5,80
5,60
5,35
360
Балка ICJ-360W
5,80
5,80
5,80
5,80
5,80
400
Балка ICJ-400W
5,80
5,80
5,80
5,80
5,80
240
Балка ICJ-240L
6,20
5,80
5,45
5,15
4,95
240
Балка ICJ-240L с полкой 89 мм
6,90
6,45
6,05
5,75
5,50
300
Балка ICJ-300L
7,40
6,90
6,50
6,15
5,90
300
Балка ICJ-300L с полкой 89 мм
8,25
7,70
7,20
6,90
6,60
360
Балка ICJ-360L
8,50
7,90
7,50
7,10
6,80
360
Балка ICJ-360L с полкой 89 мм
9,45
8,80
8,30
7,90
7,55
400
Балка ICJ-400L
9,25
8,60
8,10
7,70
7,40
400
Балка ICJ-400L с полкой 89 мм
10,25
9,55
9,00
8,50
8,15
460
Балка ICJ-460L
10,25
9,55
9,00
8,50
8,15
460
Балка ICJ-460L с полкой 89 мм
11,40
10,60
10,00
9,50
9,05
500
Балка ICJ-500L
11,00
10,15
9,55
9,10
8,65
500
Балка ICJ-500L с полкой 89 мм
12,15
11,30
10,60
10,05
9,65
600
Балка ICJ-600L
12,50
11,65
11,00
10,40
9,95
600
Балка ICJ-600L с полкой 89 мм
13,30
12,90
12,15
11,55
11,05
Таблица расчета балок чердачного не эксплуатируемого перекрытия
Расчет для нагрузки 250 кг/м2 с нагрузкой на перекрытие от стропильной системы
Высота балки, мм
Тип балок / шаг балок
Максимальные пролеты, м
0,4
0,5
0,6
0,7
0,8
240
Балка ICJ-240W
5,25
4,95
4,60
4,35
4,15
300
Балка ICJ-300W
5,80
5,80
5,50
5,20
4,95
360
Балка ICJ-360W
5,80
5,80
5,80
5,80
5,70
400
Балка ICJ-400W
5,80
5,80
5,80
5,80
5,80
240
Балка ICJ-240L
5,77
5,36
5,04
4,79
4,58
240
Балка ICJ-240L с полкой 89 мм
6,43
5,97
5,61
5,33
5,10
300
Балка ICJ-300L
6,88
6,39
6,01
5,71
5,46
300
Балка ICJ-300L с полкой 89 мм
7,68
7,13
6,70
6,37
6,09
360
Балка ICJ-360L
7,92
7,35
6,92
6,57
6,28
360
Балка ICJ-360L с полкой 89 мм
8,80
8,17
7,69
7,31
6,99
400
Балка ICJ-400L
8,58
7,97
7,50
7,12
6,81
400
Балка ICJ-400L с полкой 89 мм
9,54
8,85
8,33
7,91
7,57
460
Балка ICJ-460L
9,54
8,85
8,33
7,91
7,57
460
Балка ICJ-460L с полкой 89 мм
10,59
9,83
9,25
8,79
8,40
500
Балка ICJ-500L
10,16
9,43
8,87
8,43
8,06
500
Балка ICJ-500L с полкой 89 мм
11,27
10,46
9,84
9,35
8,94
600
Балка ICJ-600L
11,64
10,81
10,17
9,66
9,24
600
Балка ICJ-600L с полкой 89 мм
12,89
11,97
11,26
10,70
10,23
Расчёт балки бесплатно онлайн
Добро пожаловать! Данный онлайн-калькулятор предназначен для расчёта балки и позволит
построить эпюры внутренних силовых факторов (изгибающих моментов, поперечных и осевых
или продольных сил), рассчитать реакции в опорах. В итоге формируется отчёт с готовым
решением. Удачи!
12
Операции
Объекты
В данном расчёте не задано ни одного объекта. Для создания объектов модели перейдите в раздел "Операции"
Расчет нагрузки двутавровой балки – максимальные значения + Видео
Расчет нагрузки двутавровой балки проводится для определения номера из списка сортамента при проектировании несущих конструкций зданий и сооружений. Расчет производится согласно формулам и таблицам, а полученные параметры влияют на процесс проектирования и строительства, а также дальнейшие эксплуатационные характеристики конструкции.
1 Применение двутавровой балки и основные параметры
Основная функция двутавра при проектировании различных зданий и сооружений – создание надежной и эффективной несущей конструкции. В отличии от бетонных вариантов несущих конструкций, использование двутавровой балки позволяет добиться увеличения ширины пролетов жилых или коммерческих зданий и уменьшить массу основных несущих конструкций. Таким образом, существенно повышается рентабельность строительства.
Двутавровое балки
Двутавровый швеллер выбирается, исходя из длины и веса. Балки могут быть горячекатаными стандартными или специальными и иметь параллельные или наклонные грани полок. Они изготавливаются из низкоуглеродистой стали различных марок и используются в разных сферах строительства. Согласно нормам ГОСТ 823989, длина двутаврового швеллера может быть от 3 до 12 метров. По типу использования такие балки могут быть балочными, колонными, широкополочными или монорельсными, которые используются для строительства подвесных мостов. Определить тип балки можно по буквенной маркировке в таблице сортамента.
Масса двутавра рассчитывается согласно таблице сортамента, в которой указан конкретный номер и маркировка двутавровой балки, а также показатели ширины, высоты, толщины полок и средняя толщина стенок профиля. Таким образом, для определения массы, согласно таблице, необходимо знать нормативный вес одного погонного метра. Например, балка с номером 45, при весе погонного метра 66,5 кг, имеет длину 15,05 метров.
Помимо расчета массы, который можно провести, используя простой калькулятор, в процессе проектирования необходимо рассчитать максимальную и минимальную нагрузку на изгиб и прогиб (деформацию), чтобы выбрать подходящую под конкретные цели строительства двутавровую балку. Данные расчеты основаны на таких параметрах металлического профиля, как:
минимальное и максимальное расстояние между полками (стенками) балки с учетом их толщины;
максимальная нагрузка на будущую конструкцию перекрытия;
тип и форма конструкции, метод крепления;
площадь поперечного сечения.
В некоторых случаях для проведения расчетов может понадобиться и шаг укладки, то есть расстояние, через которое балки укладываются параллельно друг другу.
Расчет двутавровой балки, как правило, производится на прочность и прогиб. Для максимально точных расчетов в таблице сортамента и нормах ГОСТ прописаны и такие необходимые параметры, как момент сопротивления, который делится на статистический и осевые моменты. Помимо этого, иногда необходимо знать величину расчетного сопротивления, которая зависит от типа и марки стали, из которой изготовлена двутавровая балка, а также от типа производства (сварная или прокатная). В случае сварного профиля при расчете прочности прибавляется до 30 процентов к вычисленной несущей нагрузке профиля.
2 Выбор металлической балки по номеру и примеры расчета
В таблице сортамента все номера металлического двутавра указаны согласно нормам ГОСТ 823989. Таким образом, выбор номера должен осуществляться с учетом предполагаемой нагрузки на балку, длины пролетов, веса. Например, если максимальная нагрузка на двутавровую балку равна 300 кг/м.п, из таблицы выбирается балка номер 16, при этом пролет будет равен 6 метрам при шаге укладки от 1 до 1,2 метров. При выборе 20-го профиля максимальная нагрузка увеличивается до 500 кг/ м.п, а шаг может быть увеличен до 1,2 метра. Профиль с номерами 10 или 12 означает максимально допустимую нагрузку до 300 кг/м.п и сокращение пролета до 3-4 метров.
Применение балок в строительстве
Таким образом, расчет того, какую нагрузку выдерживает балка, производится так:
определяется величина нагрузки, которая давит на перекрытие с учетом веса самого профиля (из таблицы), которая рассчитывается на 1 погонный метр профиля;
полученная нагрузка, согласно формуле, умножается на показатель коэффициента надежности и упругости стали, который прописан в ГОСТ 823989;
используя таблицу расчетных значений по ГОСТ, необходимо определить величину момента сопротивления;
исходя из момента сопротивления, выбираем соответствующий номер из таблицы сортамента.
Рассчитывая несущую нагрузку при выборе профиля, рекомендуем выбирать номера балки на 1-2 пункта выше полученных расчетных значений. Несущая способность профиля также рассчитывается при определении нагрузки двутавровой балки на изгиб.
3 Как марки стали влияют на расчеты?
При расчете прочности несущей балки в обязательном порядке учитывается марка стали, которая использовалась в процессе производства, и тип производственного проката. Для сложных конструкций и возведения перекрытий жилых зданий, коммерческих помещений, мостов необходимо выбирать балки из максимально прочных марок стали. Изделия с более высокой прочностью обладают меньшими габаритными размерами, но при этом способны выдерживать большие нагрузки.
Балки на производстве
Таким образом, расчет на прочность рекомендуется проводить несколькими способами, а полученные данные сравнить для получения максимально точных результатов вычислений. При определении прочности необходимо знать нормативные и расчетные напряжения и учитывать такие параметры, как поперечные и продольные силы, а также крутящие моменты. Существует несколько вариантов расчетных калькуляторов, с помощью которых определяется максимально и минимально допустимая нагрузка на прочность.
4 Как вычислить нагрузку на деформацию?
Для определения нагрузки балки на деформацию необходимо учитывать такие параметры, как:
расчетная и нормативная нагрузка;
длина и вес перекрытия;
нормативное сопротивление.
Двутавровые балки для строительства
При этом для некоторых типов балок невозможно рассчитать нагрузку на прогиб, ввиду их формы и видов крепления при строительстве. Следует также понимать, что деформация балки (прогиб) возникает в поворотных углах. Поэтому она сильно зависит от габаритов конструкции, ее назначения, марки стали и других свойств и показателей. Существует несколько формул и вариантов для расчета балки на прогиб, использование которых зависит от расчета деформации внизу и вверху балки. Чаще всего для того, чтобы вычислить максимальную нагрузку на прогиб, специалисты используют универсальную формулу. Величину нагрузки на будущую конструкцию необходимо умножить на ширину пролета в кубическом объеме. Полученный параметр разделите на произведение модуля упругости и величины инерционного момента.
Модуль упругости вычисляется, исходя из конкретной марки стали, момент инерции прописан в ГОСТе по номеру выбранной балки. Полученное число необходимо умножить на коэффициент, равный 0,013. В том случае, если рассчитанный относительный коэффициент деформации больше или меньше, чем прописано в нормативе, то в строительной конструкции необходимо использовать двутавры большего или меньшего типоразмера из таблицы.
Следует понимать, что двутавровая балка, ввиду своей формы, конструкции и веса, довольно редко используется в частном строительстве. Обычно вместо балок применяются более легкие швеллеры или стальные уголки. Но если вы все же используете балку для строительства небольшого частного дома, дачи, то необязательно проводить сложные расчеты по всем видам деформации и нагрузок. Для небольшой конструкции перекрытия достаточно рассчитать максимальную и минимальную нагрузку на изгиб.
Калькулятор расчета металлической двутавровой балки на прогиб, прочность
Для примера расчета прогиба балки рассмотрим простую деревянную скамью с ножками на расстоянии 1,5 метра друг от друга в их центрах. Допустим, у нас есть доска из восточной белой сосны толщиной 4 см и шириной 30 см, которая служит сиденьем для этой скамейки. Мы можем рассматривать это сиденье как балку, которая отклоняется, когда кто-то садится на скамейку. Учитывая размеры этого сиденья, мы можем вычислить его момент инерции, как в нашем примере выше.Поскольку нам нужно рассчитать Iₓ, его момент инерции будет:
Iₓ = ширина * высота³ / 12 = 30 * (4³) / 12 = 160,0 см⁴ или 1,6x10⁻⁶ м⁴
Сосна белая восточная имеет модуль упругости 6800 МПа (6,8x10⁹ Па) , что является значением, которое мы получили из Справочника по древесине. Вы также можете легко получить значение модуля упругости для других материалов, таких как сталь и бетон, в Интернете или в местной библиотеке.Теперь, когда мы знаем эти значения, давайте рассмотрим нагрузку, которую будет нести этот стенд. Предположим, что ребенок 400 N сидит в центре скамейки. Теперь мы можем рассчитать прогиб сиденья скамьи из-за точечной нагрузки в его центре:
δₘₐₓ = P * L³ / (48 * E * I) δₘₐₓ = (400 Н) * (1,5 м) ³ / (48 * 6,8x10⁹ Па * 1,6x10⁻⁶ м⁴) δₘₐₓ = 0,002585 m = 2,5850 мм
Это означает, что многоместное сиденье прогнется примерно на 2.6 миллиметров от исходного положения, когда ребенок сидит в середине скамейки.
Если вы нашли эту тему интересной и хотели бы узнать больше о прочности материалов, вам также может понравиться наш калькулятор запаса прочности. Вы также можете воспользоваться нашим конвертером силы, если хотите изучить различные единицы измерения точечных нагрузок и расчета сил.
Николас Суонсон и Кеннет Аламбра
.
Калькулятор отклонения балки
Калькулятор прогиба балки для расчета изгибающего момента, поперечной силы, напряжения изгиба, прогиба и наклон свободно поддерживаемой балки, консольной балки и неподвижной неподвижной балки.
КАЛЬКУЛЯТОРЫ КОМПРЕССИОННЫХ ЧЛЕНОВ
Калькулятор
Определение
Расчет элементов сжатия (продольного изгиба)
ПРОСТО ОПОРНАЯ БАЛКА КАЛЬКУЛЯТОРЫ ПРОГИБА
Балка с простой опорой и множественными точечными / распределенными нагрузками и моментами
Балка с простой опорой и сосредоточенной нагрузкой в любой точке
Просто поддерживаемая балка с двумя Точечные нагрузки
Балка с простой опорой и частично распределенной промежуточной нагрузкой
Балка с простой опорой и двумя частично распределенными промежуточными нагрузками
Балка с простой опорой и моментом
Балка с простой опорой и двумя моментами
КАНТИЛЬНАЯ БАЛКА КАЛЬКУЛЯТОРЫ ПРОГИБА
Консольная балка с множественными точечными / распределенными нагрузками и моментами
Консольная балка с одинарной нагрузкой
Распределенная нагрузка консольной балки
.
Формула и уравнения отклонения балки
перейти к содержанию
Искать:
Программное обеспечение
SkyCiv Structural 3D: Программное обеспечение для структурного анализа
SkyCiv Beam
SkyCiv Section Builder
SkyCiv Connection Design
SkyCiv RC Design
SkyCiv Foundation Design
SkyCiv8 Модуль нагрузки на ветер SkyCiv8 Интеграции и надстройки
Цены
.
Отклонение луча: как рассчитать
В приложениях, связанных с перемещением, существует множество ситуаций, когда линейная направляющая или привод не полностью поддерживается по всей своей длине. В этих случаях прогиб (из-за собственного веса компонента, а также из-за приложенных нагрузок и сил) может повлиять на рабочие характеристики подшипников и вызвать плохую работу в виде преждевременного износа и заедания.
Изделия, которые могут быть смонтированы только на концевых опорах, таких как линейные валы или узлы приводов, или в консольной ориентации, например телескопические подшипники, обычно имеют спецификацию на максимально допустимый прогиб.Важно проверить приложение и убедиться, что этот максимальный прогиб не превышен. К счастью, большинство линейных направляющих и приводов можно смоделировать как балки, а их отклонение можно рассчитать с помощью обычных уравнений отклонения балки.
Соображения, касающиеся материалов и конструкции
При расчете прогиба необходимо знать свойства направляющей или исполнительного механизма и условия приложенной нагрузки. Что касается направляющей или привода, важными критериями являются модуль упругости и планарный момент инерции компонента.Модуль упругости является мерой жесткости материала и обычно может быть найден в каталоге продукции. Момент инерции описывает сопротивление объекта изгибу и иногда предоставляется производителем компонента. Если момент инерции не указан, его можно разумно аппроксимировать, используя уравнение момента инерции для сплошного или полого цилиндра (для линейного круглого вала) или прямоугольника (телескопический подшипник или линейный привод).
Модуль упругости, также известный как модуль Юнга или модуль упругости при растяжении, можно определить как отношение напряжения (силы на единицу площади) на оси к деформации (отношение деформации по длине) вдоль этой оси.
Планарный момент инерции (также называемый вторым моментом площади или моментом инерции площади) определяет, как точки области распределяются относительно произвольной плоскости и, следовательно, ее сопротивление изгибу.
С точки зрения применения и конструкции критериями, влияющими на прогиб балки, являются тип опоры на концах направляющей или привода, приложенная нагрузка и длина без опоры. Когда компонент является консольным, его можно смоделировать как фиксированную балку, а когда он поддерживается с обоих концов, он обычно может моделироваться как балка с простой опорой.Для консольных балок максимальное отклонение будет происходить, когда нагрузка находится на свободном конце балки, в то время как для балок с простой опорой максимальное отклонение будет иметь место, когда нагрузка находится в центре балки.
При определении полного отклонения имейте в виду, что будут иметь две нагрузки, , которые вызывают отклонение: вес направляющей или самого привода и приложенная нагрузка. Собственный вес компонента почти всегда можно смоделировать как равномерно распределенную нагрузку, оценивая приложенную нагрузку как точечную нагрузку в месте максимального прогиба (на свободном конце консольной балки или в центре балки с простой опорой). обычно обеспечивает наихудший сценарий полного прогиба.
Прогиб консольных балок
Телескопические подшипники часто являются консольными, и некоторые конфигурации декартовых роботов приводят к консольному приводу на оси Y или Z. В этом случае вес балки, который достаточно однороден по длине, вызывает максимальное отклонение на конце балки.
Изображение предоставлено: wikipedia.org
Этот прогиб рассчитывается как:
Где:
q = сила на единицу длины (Н / м, фунт-сила / дюйм)
L = длина без опоры (м, дюйм)
E = модуль упругости (Н / м 2 , фунт-сила / дюйм 2 )
I = планарный момент инерции (м 4 , дюйм 4 )
Для создания наихудшего сценария прогиба мы рассматриваем приложенную нагрузку как точечную нагрузку (F) на конце балки, и результирующий прогиб можно рассчитать как:
Сложив прогиб из-за равномерной нагрузки и прогиб из-за приложенной (точечной) нагрузки, получаем общий прогиб на конце балки:
Прогиб свободно опертых балок
Линейные валы и приводы часто закрепляются на концах, оставляя без поддержки их длину, как у балки с простой опорой.Равномерная нагрузка на балку (собственный вес вала или привода) вызовет максимальный прогиб в центре балки, который можно рассчитать как:
Поскольку это балка с простой опорой, приложенная нагрузка может быть смоделирована как точечная нагрузка в центре балки для наихудшего сценария.
Изображение предоставлено: wikipedia.org
Прогиб из-за приложенной нагрузки в этом состоянии рассчитывается как:
Полный прогиб в центре балки:
Прогиб валов с двумя подшипниками
Когда два подшипника используются на балке с простой опорой, как это обычно бывает с круглыми направляющими вала, приложенная нагрузка распределяется между двумя подшипниками, и максимальное отклонение происходит в двух местах: в положении на каждом подшипнике , когда подшипниковый узел (иногда называемый кареткой или столом) находится в центре вала.
Изображение предоставлено: Thomson Linear
Расчет отклонения балки для этого условия:
Опять же, мы должны добавить прогиб из-за собственного веса балки плюс прогиб из-за приложенной нагрузки, чтобы получить общий прогиб:
Существуют дополнительные сценарии монтажа и нагружения, которые могут возникнуть в некоторых приложениях, например, в приводе с фиксированной опорой на обоих концах. Но, как и в приведенных выше примерах, их можно оценить с помощью стандартных уравнений отклонения балки.Полный список сценариев опоры балки и уравнений отклонения можно найти на этой странице Корнельского университета.
Изображение предоставлено: wikipedia.org
.Калькулятор отклонения балки
| формула прогиба балки
Калькулятор отклонения балки используется для оценки прогиба, наклона, изгибающего момента, поперечной силы и реакций балок. Он работает через платформу Windows.
Деформация балки обычно возникает в связи с ее отклонением от фактического ненагруженного положения. Расчет отклонения выполняется от фактической нейтральной поверхности балки к нейтральной поверхности деформированной балки. Неопределенная конфигурация, созданная через деформированную нейтральную поверхность, называется упругой кривой балки.
Методы определения прогиба балки.
Ниже приведены некоторые наиболее признанные методы, которые помогают эффективно генерировать отклонения балки: 1. Метод двойного интегрирования 2. Метод момента площади 3. Метод энергии деформации (теорема Кастильяно) 4. Метод сопряженных балок 5 . Метод наложения