ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Схема подключения генератор с автозапуском


Подключение генератора к сети загородного дома – схемы и все способы

В зависимости от модели устройства автономного питания и схемы вводного щитка, подключение генератора к сети загородного дома может несколько отличаться в деталях. Есть известные различия между ручным запуском и автоматическим, нюансы подключения одно и трехфазных генераторов, но в целом, при наличии минимальных навыков работы с электрическими цепями, все получится выполнить самостоятельно. Ну а если разобраться в принципах работы электромагнитного пускателя и реле, то можно наладить автозапуск и обычного генератора, который в другом случае пришлось бы постоянно заводить ключом.

«Экстренные» способы подключения и их недостатки

Обычно «пожарными» способами пользуются в тех случаях, когда по каким-либо причинам нельзя воспользоваться генератором напрямую – требуется включить его в домашнюю сеть срочно, и нет времени монтировать отдельную схему подключения.

Специалиста от простого обывателя, кроме всего прочего, отличает знание причин запретов – именно это позволяет в нужные моменты их обойти: сделать что-то не по правилам, но получить нужный результат. Только нельзя забывать банальности - электричество не прощает ошибок, а значит надо просчитывать свои действия на несколько шагов вперед, чтобы исключить все возможные накладки.

Подключение через розетку

Самый распространенный из «пожарных» способов как подключить генератор к дому, является банальное включение его в розетку, для чего покупается или изготавливается самостоятельно «переноска» со штекерами на концах.

Применять этот метод настоятельно не рекомендуется, но простота его использования снова и снова подкупает многих владельцев генераторов малой и средней мощности.

Принцип использования такого подключения становится понятным, если посмотреть на стандартную схему домашней электропроводки. Действительно, если к одной из розеток подключить источник тока, то напряжение появится на всех участках цепи.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Распределительный автомат. 5. Розетки.

Недостатков у этого метода не так уж и много, но про них надо помнить, чтобы не испортить генератор.

1. Перегрузка провода.

На этот момент внимания можно не обращать, если используется генератор мощностью до 3 кВт. Розеточные линии стандартно подключаются проводом сечением 2,5 мм², а сами розетки рассчитаны на максимальную силу тока в 16 Ампер. Согласно таблице соотношения сечения кабелей к силе тока, который они могут пропустить, даже алюминиевые провода (которые уже запрещены к установке) такого сечения свободно выдерживают мощность до 3,5 кВт.

Сечение жилы кабеля, мм2Диаметр жилы кабеля, ммМедная жилаАлюминиевая жила
Ток, А Мощность, кВт при напряжении в сети 220 В Мощность, кВт при напряжении в сети 380 В Ток, А Мощность, кВт при напряжении в сети 220 В Мощность, кВт при напряжении в сети 380 В
1 1,12   14 3,0 5,3 - - -
1,5 1,38 15 3,3 5,7 - - -
2,0 1,59 19 4,1 7,2 14 3,0 5,3
2,5 1,78 21 4,6 7,9 16 3,5 6,0
4,0 2,26 27 5,9 10,0 21 4,6 7,9
6,0 2,76   34 7,7 12,0 26 5,7 9,8
10,0 3,57   50 11,0 19,0 38 8,3 14,0
16,0 4,51  80 17,0 30,0 55 12,0 20,0
25,0  5,64  100 22,0 38,0 65 14,0 24,0
35,0 6,68 135 29,0 51,0 75 16,0 28,0

По формуле нахождения мощности P=I*U можно определить максимальный ток, выдаваемый генератором. Если его мощность 3 кВт, а напряжение 220 Вольт, то I = 3000 / 220 ≈ 13,65 Ампер, т. е. запаса прочности даже стандартной розетки должно хватить с избытком (конечно, если это не устаревшие, еще советские модели, рассчитанные максимум на 6,3 или 10 Ампер).

Другое дело это генераторы большей мощности – для них все расчеты надо проводить отдельно. Правда все они обычно подключаются стационарно и острая необходимость в «подкидывании» их через розетку может возникнуть только в случае неисправности проводки. Вот здесь и надо твердо знать, что нарушается и можно ли это делать.

2. Человеческий фактор.

Перед включением резервного генератора в обязательном порядке надо отключать вводные автоматы. Если этого не сделать, то в лучшем случае часть мощности попросту уйдет к соседям, и генератор заглохнет от перегрузки. Хуже будет если в момент попытки завести генератор возобновится подача электричества на основную линию – это гарантированно сожжёт обмотку электродвигателя встречными токами.

Если неприятность возможна в принципе, то рано или поздно она произойдет. Даже если приладить на корпус генератора большую табличку с напоминанием о необходимости отключить вводной автомат, то всегда есть вероятность в спешке что-либо напутать.

3. Использование защитных устройств.

Если в доме проводка сделана согласно рекомендаций ПУЭ, то отдельные розеточные линии кроме стандартных автоматических выключателей будут защищаться с помощью устройств защитного отключения (УЗО). Кроме того что их надо подключать с соблюдением полярности, многие из них рассчитаны на включение источника тока на верхние клеммы, а нагрузки к нижним.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Распределительный автомат. 4. УЗО. 5. Автоматы потребителей. 

Соответственно, при включении генератора в розетку надо будет следить где фаза и ноль, а еще вполне вероятна ситуация, когда работать будут только соседние розетки, а при попытке хотя бы включить свет, выбьет УЗО. Исправлять схему ради нескольких часов работы генератора нет смысла, поэтому единственный выход здесь это его включение напрямую через распредщиток.

Вдобавок ко всем существующим минусам, экстренная схема подключения генератора к сети дома через розетку, не предполагает возможности отследить когда появляется электричество на основной линии, чтобы вовремя переключиться обратно. Для этого нужна как минимум отдельная сигнальная лампочка, но так как вводной автомат отключается, использовать ее нет возможности.

Подключение генератора к распределительному автомату

Это самый правильный способ быстро подключить генератор, но с некоторыми нюансами, которые обязательно надо учитывать.

Проще всего получится выполнить такое подключение если рядом с распределительным автоматом есть розетка – ее часто устанавливают на случай выполнения ремонтных работ или просто для страховки. Правда при этом надо точно себе представлять, как именно подключена эта розетка – оптимальный вариант показан на схеме.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Розетка. 5. Распределительный автомат.

В таком случае все упирается только в пропускную способность самой розетки (16 Ампер) и надо помнить про отключение вводного автомата.

Если такую розетку при монтаже щитка не предусмотрели, то придется откидывать проводку от ввода распределительного автомата и подключать к нему генератор напрямую

Если дальше по схеме стоят УЗО, то обязательно надо соблюдать полярность.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Распределительный автомат.

Главное здесь это не перепутать к какому именно автомату подключаться. Если вдруг есть доступ к вводному автомату перед счетчиком, и генератор подключить к нему, то в целом схема не изменится… Просто она будет включать в себя устройство учета электроэнергии, которому все равно что считать – ток из основной линии или выработанный генератором.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Распределительный автомат.

Впрочем вероятность такой ошибки/подключения мала, так как счетчик и вводной автомат пломбируются проверяющими из энергонадзора.

Так как провода от магистральной линии откидываются, то к ним можно подсоединить контрольную лампочку – когда она засветится, значит генератор можно выключать. Вводной автомат при этом надо оставить включенным.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Распределительный автомат.

Подключение генератора через перекидной рубильник

По сути это то же самое подключение генератора к распределительному автомату но уже оборудованное стационарным трехпозиционным переключателем чтобы не приходилось откручивать провода от клемм автоматического выключателя.

Под трехпозиционным подразумевается переключатель, к которому ток может подходить от двух разных веток, но нагрузка подключается только к одной из них. Третье положение нейтральное, чтобы исключить контакт входящих проводов. Так как генератор имеет собственный ноль, то и переключатель надо подбирать соответствующий – устанавливать однопроводной, через который переключается только фаза, здесь нельзя.

Если под рукой нет трехпозиционного переключателя, то временно можно изготовить и двухпозиционное перекидное устройство из двух двухполюсных автоматов. Их желательно взять одного производителя и номинала, чтобы совпадали размеры. Автоматы надо установить рядом, но один из них перевернуть вверх ногами, а клавиши скрепить вместе – для этого производителями предусмотрены отверстия для штифтов.

Понимающий в электрике человек может соорудить такое устройство и из четырех однополюсных автоматов – не переворачивать их и переключать каждый по отдельности. Но если кто-нибудь кроме него будет запускать генератор, то «защитой от дурака» лучше все-таки озаботиться сразу.

Сам переключатель устанавливается возле генератора. Это удобнее всего, так как его пуск выполняется в определённом порядке: сначала запускается сам генератор, а когда он прогреется, то к нему подключается нагрузка.

Чтобы генератор не работал впустую, после включения электричества на основной линии, надо сделать отвод для сигнальной лампы и разместить ее на заметном месте. Чтобы она не светила все время, то подключать ее надо через выключатель. Если есть опасения забыть его включить, то можно добавить элемент автоматизации, подключив лампу через любой нормальноразомкнутый контакт пускателя. Вся схема подключения генератора через перекидной рубильник и с сигнальной лампой выглядит следующим образом:


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Распределительный автомат. 5. УЗО.

Пока есть напряжение на магистральной линии, вся схема работает в обычном режиме – ток проходит через переключатель и дальше идет на распределительный автомат. Когда пропадает электричество, то надо вручную запустить генератор и переключить нагрузку с дома на него. При запуске генератора через катушку пускателя КМ проходит ток и его контакты замыкаются – сигнальная лампа оказывается включена в сеть и когда на магистральной линии появится электричество, то лампочка засветится.

Простейшая схема автопереключения

Чтобы каждый раз при необходимости запустить генератор не приходилось клацать переключателем, можно собрать простейшую схему автопереключения источника тока. Это не система автозапуска – ее назначение только выполнять переключение ввода между магистральной линией и генератором, а пуск и остановку двигателя все равно придется выполнять вручную. Минимально необходимые для этого детали – два пускателя (контактора) – КМ1 и КМ2 с перекрестным подключением. В них будут задействованы силовые контакты (КМк) и нормально замкнутые (КМнз). Чтобы у генератора было время прогреться, то дополнительно желательно использовать реле времени.

На рисунке показана такая схема, как подключить генератор к сети дома – работает она по следующему принципу:


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Распределительный автомат. 4. Генератор. 5. Реле времени. 6. Контактор основного ввода. 7. Контактор резервного ввода.

Пока есть электричество на магистральной линии, катушка КМ1 удерживает замкнутыми силовые контакты КМк1 и разомкнутыми нормальнозамкнутые КМ1нз1 и КМ1нз2. Когда электричество отключается, то размыкаются силовые контакты КМк1, а КМ1нз1 и КМ1нз2 замыкаются – теперь при запуске генератора, через время, на которое рассчитано реле, на катушке КМ2 появится напряжение, замкнутся силовые контакты КМк2 и ток в дом будет подаваться от генератора.

Когда на основной линии появляется электричество, то срабатывает катушка КМ1 – размыкаются контакты КМ1нз1 и КМ1нз2, обесточивая катушку КМ2. Силовые контакты КМк2 размыкаются, а КМк1 замыкаются и питание в дом снова идет от магистральной линии. Остается только не забыть выключить сам генератор.

Автозапуск генератора своими руками

При наличии определенных навыков в электротехнике можно самостоятельно собрать схему, способную без участия человека запустить генератор, когда на магистральной линии пропадет электричество. Главное условие – для этого нужна модель генератора, которая запускается и останавливается ключом, так как автоматизировать стартер, который надо дергать за шнур, дело заведомо неблагодарное.

Чтобы понимать принцип работы автоматического запуска надо точно представлять себе весь порядок действий, которые придется проделать для включения генератора:

1. Через 1-2 минуты после пропадания света, открыть воздушную заслонку двигателя и завести его. Задержка во времени нужна на тот случай, если свет просто моргнул или отключился на несколько секунд.

2. Еще через 2 минуты, когда двигатель прогреется, переключить нагрузку с магистральной линии на генератор, потом закрыть воздушную заслонку.

3. При появлении электричества на основной линии через 30-60 секунд отключить двигатель и переключить нагрузку с генератора на магистральную линию

Чтобы реализовать этот алгоритм, понадобятся четыре реле времени, четыре электромагнитных пускателя и магнитные толкатели с концевыми выключателями, наподобие сервоприводов, которые используются для центрального замка автомобиля. В стандартном электромагнитном пускателе есть катушка (КМ), нормально разомкнутые силовые контакты (КМк), 2 нормально разомкнутых управляющих контакта (КМнр1-2) и 2 нормально замкнутых управляющих контакта (КМнз1-2).

На рисунке общая схема подключения генератора к дому с автозапуском – принцип ее работы следующий.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Генератор. 4. Распределительный автомат. 5, 6. УЗО.

При отключении электричества, катушка КМ4 перестает удерживать в разомкнутом состоянии контакты КМ4нз2, что включает зажигание генератора. Также катушка КМ1 перестает удерживать контакты КМк1 – они размыкаются и теперь линия отключена от домашней сети. Параллельно замыкаются нормальнозамкнутые контакты КМ1нз1 и КМ1нз2. Они запускают сервопривод, открывающий воздушную заслонку двигателя, и подают импульс для старта Реле времени 1 – через минуту замкнется контакт ключа и стартер запустит двигатель.

Старт генератора вызывает срабатывание катушки КМ3, которая размыкает нормально замкнутые контакты КМ3нз1 и КМ3нз2, чем останавливает стартер и обесточивает Сервопривод-1. Параллельное замыкание нормальнозамкнутого контакта КМ1нз2 подает импульс на другое реле времени – через две минуты запустится Сервопривод-2, закрывая воздушную заслонку, и сработает катушка КМ2, замыкая контакты КМк2, после чего ток подается в дом с генератора.

Чтобы обеспечить обратное переключение сначала надо через 1-2 минуты после появления электричества разомкнуть цепь катушки КМ2 и заглушить двигатель, для чего используется Реле времени 3 и пускатель КМ4, при срабатывании которого размыкаются нормально замкнутые КМ4нз1 и КМ4нз2. При отключении катушки КМ2 замыкается нормально замкнутый контакт КМ2нз1, который по истечении двух минут, через Реле времени 4 включает катушку КМ1 – теперь генератор обесточен и готов к следующему запуску, а питание в дом идет от магистральной линии.

Это только один из возможных вариантов автоматизации запуска. К примеру, при желании схему можно упростить убрав из нее реле времени и сервоприводы воздушной заслонки. Правда это можно делать только в том случае, если двигатель хорошо заводится, и вообще все его комплектующие хорошо отлажены.

Основной недостаток любой подобной схемы – она управляет автозапуском генератора, но не сможет отреагировать даже на незначительную нештатную ситуацию. К примеру, если заклинит воздушную заслонку, то двигатель будет работать на повышенных оборотах, а при неисправности самого двигателя внутреннего сгорания – если он не заводится – в лучшем случае, сядет аккумулятор.

Автозапуск генератора через блок АВР

Назначение таких устройств – частично или полностью исключить участие человека в работе генератора. Есть две основные разновидности таких устройств. Первая полностью копирует систему автопереключения, которая работает на двух пускателях, но с добавлением электронного блока запуска и остановки генератора. От магистральной линии электроснабжения к нему подводится слаботочный кабель, по которому блок получает информацию о наличии или отсутствии напряжения в сети. В зависимости от этого он подает команду двигателю на пуск или остановку, а переключения между вводом из магистральной линии или от генератора, выполняют сами пускатели. В целом, это такая же система, как и предложенная схема для самостоятельной сборки, но здесь не придется ничего выдумывать – просто установить готовый блок.

Недостаток у такого блока тот же – его назначение только запуск и остановка двигателя без дополнительной защиты.

Сама схема выглядит следующим образом:


1. Вводной автомат. 2. Счетчик электроэнергии. 3. Блок автоматического запуска генератора. 4. Генератор. 5. Реле времени. 6. УЗО. 7. Контактор основного ввода. 8. Контактор резервного ввода.

Более совершенный вариант это комплексная система, управляемая микропроцессорной электроникой. В целом она работает так же, как и самодельная система автозапуска, но ее главным преимуществом является наличие многочисленных датчиков, которые контролируют все аспекты работы генератора. Если случается какая-либо неисправность оборудования, то блок АВР сможет адекватно среагировать – не терзать генератор попытками автозапуска, а при наличии GSM-модуля и отправить владельцу сообщение о неисправности.

Сам блок АВР монтируется вместо распределительного щитка – для этого не нужно больших познаний – просто к нему надо подключить провода с магистральной линии, силовой и кабель управления от генератора и вывод в дом.


1. Вводной автомат. 2. Счетчик электроэнергии. 3. АВР. 4.Генератор. 5. Управляющий кабель. 6. Автоматы потребителей. 7. Нулевая шина. 8. Шина заземления.

Такой блок является сложным комплексом оборудования и его стоимость в некоторых случаях может равняться цене генератора. Поэтому его приобретение оправдано только в случае частых отключений электроэнергии и для достаточно мощных генераторов.

Разница между одно и трехфазным подключением

Все подключения, что в однофазной, что в трехфазной сети выполняются полностью идентично, за исключением количества силовых проводов. Единственный важный нюанс касается так называемой фазы управления – если подключать к сети пускатель, то его основные контакты подключают и отключают от сети силовые провода, а питание для электромагнитной катушки тоже надо откуда то брать.

В однофазной сети проблем нет – фаза одна и такого вопроса просто не существует, а в трехфазной все несколько сложнее – есть L1, L2 и L3. Не вдаваясь в технические подробности, ответ здесь один – для управляющих цепей можно использовать любую из фаз, но только одну. Т. е. если катушка КМ1 запитана от фазы L3, то управление остальными пускателями, кнопки «Старт» и «Стоп» тоже надо «подвешивать» только на нее. Сделать это не сложно – просто отметить, какого цвета провод на нужной фазе, а если кабель с одноцветными жилами, то наклеить или нарисовать на них маркеры.

Заземление

Сам принцип работы генератора предполагает периодическое возникновение на его корпусе статического электричества, поэтому все стационарно устанавливаемые устройства в обязательном порядке нуждаются в отдельном контуре заземления.

Идеальный вариант это создание полноценного заземляющего контура, но в целом можно обойтись и простейшим способом, для которого понадобятся металлический прут, длиной 1,5-2 метра, стальной болт или хомутовое соединение и мягкий медный провод. К железному пруту приваривается болт, а сам штырь забивается на всю длину в землю. Медный провод прикручивается одной стороной к болту (или зажимается хомутом), а другой к корпусу генератора – заземление готово.

Это все основные способы как подключить бензогенератор к сети дома и возможные нюансы. Представленные схемы помогут определить, стоит ли устанавливать системы автозапуска или проще будет обойтись ручным переключением. Разумеется, что при установке каждого отдельного генератора, блока АВР или самодельной системы автозапуска, могут возникнуть дополнительные вопросы, но решать их уже придется в каждом случае отдельно в зависимости от модели устройства и схемы домашней электросети.

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как подключить бензиновый генератор к сети дома

Использование генератора электроэнергии в доме может производиться 2 путями: через подключение электроприборов непосредственно в розетку агрегата через удлинитель и через интеграцию генератора в общую электросеть помещения. Если первый способ годится для нечастого и кратковременного пользования (например, на даче или на природе), то второй способ используется при длительных перебоях с электричеством или при его полном отсутствии на объекте. В этой статье речь пойдет о генераторах как об основном или резервном источнике электропитания в загородном доме или в любом другом здании (в магазине, цехе, на производственных объектах) и об их правильном подключении.

Перед тем, как подключать электростанцию к домовой сети, нужно решить несколько задач:

  1. Понять, насколько необходимо резервное питание. Оценить, насколько критично будет отключение электричества или требуется постоянное питание (например, если в доме запущен сервер или просто дорогая техника)

  2. Определить место для агрегата с учетом безопасной эксплуатации и близкого расстояния к точке подсоединения.

  3. Просчитать необходимую мощность для всех электроприборов в доме, которые могут использоваться. Также необходимо учесть возможные потери на линии и оставить небольшой запас мощности (20–30%).

  4. Определиться с выбором использования автоматики или ручного управления.

Использование автоматических систем управления и защиты выйдет дороже за счет себестоимости и необходимости дополнительных мер защиты проводки от сильных скачков напряжения при переключении с общей сети на генератор и наоборот. Более щадящей мерой будет использование ручного управления, когда вы самостоятельно производите переключение.

При подключении генератора производится работа с 3 сетями:

  1. общая сеть, через которую дом получает электричество;

  2. внутренняя сеть дома;

  3. проводка генератора.

Почему нельзя подключать генератор через розетку

Подключение через разъем – достаточно простая процедура, однако не стоит отдавать ей предпочтение при подсоединении генератора к общедомовой электросети, так как это влечет множество проблем:

  • Возможность перегрузки в точке подсоединения – так как вся нагрузка полностью ложится только на одну розетку, это чревато быстрым перегревом, оплавкой и даже ее возгоранием.

  • Отсутствие в электролинии отдельного автомата, который отвечал бы за безопасность и аварийное отключение при возникновении опасных ситуаций.

  • Невнимательность человека – при включении агрегата иногда забывают отключить автомат ввода. Это влечет за собой перегрузку и активацию блока защиты.

  • Возможность поломки генератора при пуске электротока по линии и его попадании на контакты работающего агрегата. В этом случае может потребоваться серьезный ремонт или полная замена электростанции.

Способы подключения генератора к сети

Существует 3 способа правильного подключения электростанции к домовой сети.

Перекидной (реверсивный) рубильник (ручное управление)

Это прибор, который будет отвечать за безопасное подключение. Преимущества такого типа управления:

  • Простота конструкции – рубильник оснащен 3 режимами – 1-0-2. 1 - питание от общей сети, 0 - замыкание всех контактов, 2 - питание от генератора.

  • Простота подсоединения – к верхней части рубильника с левой стороны подключается общая сеть, с правой – генератор. Снизу провода-перемычки формируют ввод в общедомовую линию. Для безопасности системы рекомендуется добавить автоматы к каждой линии. Они обеспечивают отключение системы при перегрузках и других критичных ситуациях.

  • Доступная цена – рубильники такого типа стоят в пределах 500 р.

Запуск генератора с перекидным рубильником:

  1. отключение автомата ввода,

  2. рубильник устанавливается в положение 2,

  3. отключение автомата нагрузки,

  4. запуск генератора (прогрев агрегата перед полноценной работой выполняется в течение 4 минут),

  5. на рубильник подается ток,

  6. включение автомата нагрузки.

Заземление генератора в этом случае обязательно. Для этих целей в землю вколачивают металлический прут длиной от 2 м и соединяют его через медный провод к соответствующей клемме на генераторе.

Данный вариант также применяется для подключения к трехфазной сети однофазного генератора. На схеме ниже показано, как правильно произвести подсоединение агрегата к электролинии.


Полуавтоматический блок АВР (автоматики ввода резерва) на контакторах
  • В данном случае используется самый простой вариант блока АВР с приоритетом на магистральную сеть.

  • Для общей системы вам потребуется:

  • Автоматы АВР на полупроводниках (2 шт.), которые соединяются между собой;

  • Кабель сечением не меньше 4 мм2. Длина кабеля определяется удаленностью конструкции от генератора;

  • Автоматы, отключающие линии;

  • Металлический ящик – размеры зависят от габаритов устанавливаемого электрооборудования и места монтажа.

Схема подключения:

  1. В ящике собираются все элементы системы: устанавливаются автоматы, к ним подключаются блоки АВР, после выполняется проверка правильности подключения.

  2. Подсоединение элементов цепи наглядно показано на схеме:


3. Заземление генератора.

Запуск системы:

  1. При отсутствии электропитания в общей сети запускается генератор и автоматически произойдет переключение линии благодаря замыканию контактора.

  2. При появлении тока в общей сети переключение с генератора на централизованное электроснабжение произойдет автоматически. При этом вам следует лишь заглушить генератор ради экономии топлива.

Для удобства управления и защиты системы можно дополнительно установить реле, которое будет выключать агрегат при активации общей сети, и включать его с задержкой в 4 минуты, чтобы генератор успел прогреться.

Блок автоматического управления

Такой тип подключения считается самым лучшим на сегодняшний день. Подробная схема подключения показана на картинке ниже.

 

Для этого типа подключения необходимо подобрать генератор с автозапуском для построения полностью автоматизированной системы. А чтобы избежать проблем с частым доливом топлива, можно дополнительно приобрести бензобак большого объема.

Принцип работы системы:

  1. При прекращении подачи тока в общей сети блок быстро реагирует на изменения и запускает сигнал АВР, который, в свою очередь, активизирует генератор. После запуска агрегату дается 4 минуты для прогрева, после этого электричество поступает в общедомовую сеть.

  2. После возобновления подачи тока от общей магистрали генератор автоматически выключается.

Основные правила использования генератора в доме

Соблюдение этих правил позволит избежать опасных ситуаций и выхода из строя оборудования.

  1. Перед тем как подключить бензиновый генератор к сети, обеспечьте хорошую вентиляцию в помещении, где он будет установлен. Особенно это касается моделей с воздушным охлаждением.

  2. Помещение должно быть отапливаемым и защищенным от сырости и влаги.

  3. Не размещайте агрегат вблизи отопительных приборов и других источников тепла, в том числе прямых солнечных лучей.

  4. Перед дозаправкой генератор следует выключить.

  5. Если вы разлили топливо вблизи электростанции, тщательно вытрите его.

  6. После соединения контактов не должно оставаться никаких оголенных проводов.

  7. При установке обязательно заземляйте агрегат.

  8. Во время работы генератора соблюдайте технику безопасности: не подходите к агрегату в одежде со свободно висящими краями, с распущенными волосами, так как вентилятор может затянуть их внутрь.

  9. Перед каждым включением генератора необходимо обязательно проверять исправность всех механизмов и узлов системы, а при обнаружении неисправности своевременно ремонтировать или заменять отработавшие элементы. 

Описание схемы подключения запуска генератора с блоком управления АВР-1/1

 Схемы подключения блока АВР-1/1 с автоматическим управлением запуском  и контролем работы  мобильной генераторной установки и ввода городской сети.

    На Рис.2  представлена одна из рабочих схем подключения блока управления АВР-1/1М. Проводники, подключенные к блоку, отображены схематично, без привязки к конкретным клеммам. Компоновка достаточно проста в реализации и под силу пользователям даже с начальным уровнем электротехники.
  На Рис.3 изображена производная схема от схемы на Рис.2, с дополнительными элементами защиты, автоматическим зарядным устройством  и с полной прорисовкой подключения проводников к клеммам контроллера АВР-1/1.

  У нас Вы можете заказать готовый к установке щит АВР с резервным вводом генератора собранный по схеме  Рис.3  любой мощности или заказать монтаж и подключение под ключ.


Начало пути.

   Как правило, вопрос по автоматизированному управлению вводом генератора и вводом сети возникает, когда пришлось столкнуться с рядом неудобств ручного управления вводами. Первоначально, для ручного управления, собирают, в большинстве случаях,  самую простую схему  на 2-х автоматических выключателях Рис.1. без элементов защиты.

 За основу  будут взяты ввод 220В/50Гц городской однофазной сети 1, однофазный счетчик электроэнергии 2, автоматические выключатели А1 на 25 ампер с характеристикой С и автоматический выключатель А2 на 25 ампер с характеристикой В, подключаемая нагрузка 3(Дом)  и однофазный бензиновый генератор с электростартером на 6,5 кВт позиция 4.
 Работает все очень просто. Когда есть напряжение в сети, оно проходит через счетчик 2, автоматический выключатель А1 к нагрузке 3. Автомат А2 выключен. При пропадании сети отключают автомат А1, запускают генератор 4 и включают автомат А2. Нагрузка подключена к генератору. Появилась сеть - выключают автомат А2, включают автомат А1 и глушат генератор.

 Собираем автоматику АВР.
  Начинаем подключать автоматику  на базе контроллера АВР-1/1М  к уже имеющейся схеме Рис.1.
 Предложенная схема на Рис.2  позволяет это сделать достаточно безопасно и полностью автоматизировать процесс ввода резервного питания, управлять работой генератора, контролировать напряжение в сети и на резервном вводе, а также, при необходимости, отключать всю автоматику АВР  и переключать нагрузку вручную к городской сети или генератору.
  Есть желание собрать более универсальное решение АВР, ориентируйтесь на схему Рис.3.

 

На Рис.2  изображены следующие элементы:

1 - ввод городской сети 230В/50Гц

2 - бытовой однофазный счетчик электроэнергии

3 - потребитель электроэнергии (нагрузка)

4 - автономная генераторная установка (бензиновый генератор с электростартером на 6,5 кВт)

5 -  модуль управления АВР-1/1 (контроллер)

А1 - автоматический выключатель 2-х полюсный (С25А)

А2 – автоматический выключатель 2-х полюсный (В25А)

В1 - выключатель нагрузки 2-х полюсный (32А)

В2 – выключатель нагрузки 2-х полюсный (32А)

КМ1 - контактор 3-х полюсной с дополнительным нормально-замкнутым контактом (25А 230В/АС3 1НЗ).

КМ2 – контактор 3-х полюсной с дополнительным нормально-замкнутым контактом (25А 230В/АС3 1НЗ).

УГ – жгут проводников управления генератором ( стартер, питание, заслонка, зажигание, топливный клапан)

Что ставим? Для чего?

Позиции 1, 2, 3, 4, А1, А2 – остаются от схемы на Рис.1, поэтому нам потребуется все остальное.

  Выключатель нагрузки В1 (БАЙПАС): Служит для разрыва цепи сеть-дом при работе в автоматическом режиме и подключения сети к дому в ручном режиме. Ставим номиналом не меньше чем  автоматический выключатель А1. Если не получится приобрести выключатель нагрузки – устанавливаем автоматический выключатель с номиналом выше чем у А1. Установлен А1 на 25 ампера с характеристикой С  - ставим на 32 ампера с характеристикой С. Ставим мощнее, чтобы при перегрузках срабатывал автомат А1.

  Выключатели нагрузки В2  (БАЙПАС)(на Рис.3 обозначен Q3): На схеме выделен синим пунктиром. Служит для подключения генератора к дому в ручном режиме, при отключенном блоке АВР-1/1. В автоматическом режиме находится в разомкнутом состоянии. Ставим номиналом не менее автомата А2, если не получится приобрести выключатель – устанавливаем автоматический выключатель с номиналом выше чем у А2. Установлен А2 на 25А с характеристикой С - ставим С32А. Ставим мощнее, чтобы при перегрузках срабатывал автомат А2. Но есть и обратная сторона такого решения. Получается очень слабый узел по безопасности. Контакторы КМ1 и КМ2 будут с блокировкой от "встречного включения напряжения", а выключатель В2 будет обходить эту защиту. Лучшем решением, будет установить кнопки СТАРТ-СТОП на "самоподхвате" от дополнительного NO контакта контактора КМ2. Кнопки стоят дороже выключателя, но сохраняют защиту. Кнопки будут управлять принудительным включением/отключением катушки контактора КМ2 при работающем в ручном режиме генераторе.

  Контактор КМ1 берем малогабаритный промышленного назначения с категорией применения АС-3 и номиналом как и автомат А1 на 25А. Можно применять и модульные контакторы, но они, как правило, выпускаются с категорией применения АС-1, а под АС-3 их номинал нужно уменьшать в 3-4 раза. Промышленные контакторы дешевле модульных и позволяют расширять возможности автоматизации АВР за счет дополнительных приставок.  
  Контактор К1 должен иметь вспомогательный нормально закрытый контакт для осуществления электрической блокировки от встречного напряжения. Установка механической блокировки, дополнительно увеличит степень защиты.

  Контактор КМ2  - выбираем с номиналом автоматического выключателя А2. Ставим на 25А. Используем рекомендации как и при выборе КМ1.

  Жгут управления генератором  <УГ>  - будет состоять из 7-ми одножильных, многопроволочных проводов типа ПУГВ сечением от 1 до 1,5мм2:

•Стартер – 1 провод (на Рис.2/3 зеленый цвет). Управляет автоматическим включение стартера. Подключается к штатному плюсовому выводу реле стартера генератора через клеммный переходник. От контакта реле стартера (на фото указан стрелкой) проводник идет на дополнительно установленное промежуточное 12 вольтовое реле с током нагрузки от 30А на нормально разомкнутый контакт. Промежуточное реле управляется через клеммы контроллера 9-10. Пусковые токи на реле стартера достаточно высокие и промежуточное реле возьмет нагрузку на себя.

•Питание – 2-а провода (на Рис.2 оранжевый цвет)  Подключаются к аккумулятору генератора, т.к. контроллер питается от постоянного напряжения 12В. Один провод подключаем  к плюсовой клемме расположенной на реле стартера (указана на фото стрелкой) а второй к массе (минус) генератора расположенной на картере левее.  Можно подключить к любому 12 вольтовому  источнику резервного питания постоянного тока.

Еще один важный момент при работе в ручном режиме переключения!
 При переходе на ручной режим переключения вводами, необходимо  обесточить клемму 19 питания  блока  АВР-1/1. Это полностью отключит автоматику. На схеме Рис.3 этот выключатель обозначен Q1. Можно отключать путем отсоединения  проводника питание от одной из клемм модуля или клеммной колодки.

•Зажигание -  1 провод (на Рис.2/3 голубой цвет). Служит для автоматического управления разрешением работы/глушения генератора. Подключается к проводу (обычно желтого цвета) датчика реле уровня масла (указан стрелкой на фото). Управляется через контакты  24-25 контроллера АВР-1/1 и промежуточное 12VCD реле на 20-30А с нормально-закрытым контактом, на схеме Рис.3 обозначено К2. Для разрешения работы контакт  размыкается. Глушится генератор замыканием контакта.

•Заслонка- 2 провода (на Рис.2/3 желтый цвет). Управляет положением воздушной заслонки карбюратора при пуске генератора через электропривод. Сам привод приобретается отдельно или заказывается у нас.  Достаточно установить автомобильный 2-х проводной привод. Его усилия и хода штока, в большинстве случаев, достаточно для перемещения заслонки в крайние положения. Устанавливается он на раму генератора или кронштейн карбюратора, зависит от модели генератора, и через тягу управляет перемещением заслонки.  На фото привод установлен на раму генератора через переходник и управляет воздушной заслонкой типа «рычаг». Обычно хватает крепежа из комплекта, идущего к электроприводу.  АВР-1/1  самостоятельно  меняет полярность на проводах управления и тем самым   управляет электромотором механизма привода.

Топливный клапан – 1 провод (на Рис.2 фиолетовый цвет). Управляет закрытием подачи топлива на ЭМ клапане  при отключенном генераторе. Сам клапан приобретается отдельно или заказывается у нас. Мощность катушки клапана выбираем минимальную 7-10 Вт. Чем мощней - тем будет сильнее греться, и придется решать задачу снижения температуры.  Плюсовой проводник от электромагнитного клапана подключаем к плюсу батареи генератора. Минусовой проводник от клапана идет через нормально открытый контакт промежуточного реле К2 (см. Рис.3) и  далее на минусовую клемму.
 При включении контроллером команды "разрешения работы" сработает промежуточное реле К2, замкнется нормально открытый контакт   и откроет топливный клапан. Топливо начнет поступать в карбюратор, подготавливая генератор к запуску. После "глушения" генератора, реле К2 отключится, контакты разомкнутся и подача топлива будет перекрыта.

 Устанавливать или нет электромагнитный клапан каждый решает самостоятельно. При автоматическом управление, топливный кран на баке будет открыт постоянно и если игла клапана поплавковой камеры карбюратора не перекроет подачу топлива, произойдет утечка топлива.

  Размещаем перечисленные элементы, кроме клапана и привода,  в электрическом щите  подходящего размера, производим подключение проводников.

  Сам алгоритм работы блока АВР-1/1М описан на странице с техническим описанием.

  Подключаем ввод сети, в точке  ( см. Рис.2)  после автоматического выключателя  А1 и перед выключателем В1, подключаем ввод генератора в точке после выключателя В1.    Устанавливаем перемычку на клеммы 11-12 контроллера АВР-1/1 (См. Рис.3), для установки режима NO_IC6000  и возврата воздушной заслонки после запуска генератора.
  Для перехода в автоматический режим управления  выключаем выключатель нагрузки В1, подаем напряжение питание постоянного тока =12В на модуль АВР-1/1. Для отключения автоматики, проделываем все в обратной последовательности.

 Все! Теперь можно наслаждаться   автоматически управляемым вводом резервного питания генератора, не беспокоится за "скачки" и "просадки" напряжения в сети и генераторе, т.к  АВР-1/1  следит за всем.

     

 Сомневаетесь в правильности выбора ?
 Сложная задача ?
 Нужна техническая консультация ?

 Оставьте запрос, нажав на кнопку КОНСУЛЬТАЦИЯ, и наш технический специалист свяжется с Вами и поможет разобраться.

     

 

 

3 схемы автоматического ввода резерва для дома. Ввод 1 — Ввод 2 — Генератор.

При сборке схемы автоматического ввода резерва можно выбрать три варианта. Два более простых и один посложнее.

Рассмотрим каждый из вариантов схемы поподробнее.

Простая схема АВР на 2 ввода

Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов:

  • нормально разомкнутым
  • нормально замкнутым

Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку.

Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.

Для этих целей лучше выбирать аппаратуру, изначально в своей конструкции имеющую именно силовые замкнутые и разомкнутые контакты. Подойдут такие марки как VS 463-33 или ESB-63-22, МК-103 от DeKraft, КМ ИЭК.

Вот самая простая схема АВР:

Описание и принцип работы

Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается.

SF1 и SF2 в схеме – это однополюсные автоматические выключатели.

Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:

Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2.

Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.

Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты.

При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:

  • без разрыва ноля
  • с разрывом нулевого провода

Схема ввода резерва с разрывом ноля

Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль.

Так как основная сеть в 90% случаев выполнена с глухозаземленной нейтралью, а от генератора или ИБП идет с изолированной. Здесь объединять нулевой рабочий проводник от сети, с нулем от генератора нельзя.

Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.

Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.

За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора.

Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.

Схема АВР на два ввода 380В

Трехфазная схема практически аналогична однофазной.

Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.

Схема АВР на 2 пускателя

Вторая схема немного посложнее. В ней используется уже два магнитных пускателя.

Допустим, у вас есть два трехфазных ввода и один потребитель. В схеме применены магнитные пускатели с 4-мя контактами:

  • 3 нормально разомкнутые
  • 1 нормально замкнутый КМ1

Катушка пускателя КМ1 подключается через фазу L3 от первого ввода и через нормально замкнутый контакт КМ2. Таким образом, когда вы подаете питание на ввод №1, катушка первого пускателя замыкается и вся нагрузка подключается к источнику напряжения №1.

Второй контактор при этом отключен, так как нормально замкнутый разъем КМ1, будет в этот момент размокнут, и питание на катушку второго пускателя поступать не будет. При исчезновении напряжения на первом вводе, отпадает контактор-1 и включается контактор-2. Потребитель остается со светом.

Самый главный плюс этих схем – их простота. А минусом является то, что подобные сборки называть схемами автоматизации можно с очень большой натяжкой.

Стоит лишь исчезнуть напряжению на той фазе, которая питает катушку включения и вы легко можете получить встречное КЗ.

Можно конечно усовершенствовать всю систему, выбрав катушку контактора не на 220В, а на 380В. В этом случае будет осуществлен контроль уже по двум фазам.

Но на 100% вы все равно себя не обезопасите. А если учесть момент возможного залипания контактов, то тем более.

Кроме того, вы никак не будете защищены от слишком низкого напряжения. Пускатель №1 может отключиться, только если U на входе будет ниже 110В. Во всех остальных случаях, ваше оборудование будет продолжать получать не качественную электроэнергию, хотя казалось бы, рядом и есть второй исправный ввод.

Чтобы повысить надежность, придется усложнять схему и включать в нее дополнительные элементы:

  • реле напряжения
  • реле контроля фаз и т.п.

Поэтому в последнее время, для сборки схем АВР, все чаще стали применяться специальные реле или контроллеры - ”мозги” всего устройства. Они могут быть разных производителей и выполнять функцию не только включения резервного питания от одного источника.

Вдруг перед вами стоит более сложная задача. Например, нужно чтобы схема управляла сразу двумя вводами и вдобавок еще генератором. Причем генератор должен запускаться автоматически.

Алгоритм работы здесь следующий:

1.При неисправном вводе №1 происходит автоматическое переключение на ввод №2.
2.При отсутствии напряжения на обоих вводах осуществляется запуск генератора и переключение всей нагрузки на него.

Схема АВР на 3 ввода с генератором

Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика.

На сегодняшний день, стоимость таких устройств сопоставима с ценой хорошего корпуса эл.шкафа от ABB. Но там вы получите пустую железную коробку, а здесь умные мозги, которые будут управлять и защищать всю ваше домашнюю электросеть.

В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.

AVR-02 блок ввода резерва

Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:

  • ввод№1+ввод№2
  • ввод№1+генератор
  • ввод№1+ввод№2+генератор

Рассмотрим сначала самую сложную, которая с двумя вводами и генератором. Второй ввод может быть как от отдельной ВЛ-0,4кв или непосредственно КЛ с ближайшей ТП, так и собран на аккумуляторном ИБП с гибридными инверторами.

При этом, на варианте с источником бесперебойного питания, следует предусмотреть ситуацию, когда аккумуляторы разряжаются до допустимого максимума, а потом происходит переключение на генератор. Это очень удобно, дабы не гонять дизельгенератор при кратковременных перерывах в электроснабжении.

Какими функциональными возможностями обладает AVR-02?

  • она управляет силовыми элементами – контакторами или пускателями. Также могут использоваться мотор приводы.
  • контролирует чередование фаз
  • контролирует синфазность вводов
  • формирует сигнал запуска генератора
  • может работать от внешней батареи 12В
  • измеряет уровень напряжений и отключает неисправную линию с низким или высоким напряжением, автоматически переводя питание на ту, где все нормально
  • формирует сигнал авария

На передней панели AVR-02 расположены:

  • двухстрочный жидкокристаллический дисплей
  • кнопки навигации
  • светодиодные индикаторы №1 и №2 – показывают подключенный ввод
  • К1,К2,К3,К4 – состояние исполнительных реле

Принцип работы AVR 02

Как же работает схема собранная на базе AVR-02? Вот основные ее элементы:

  • КМ1.1, КМ2.1, КМ3.1 – это силовые контакты пускателей
  • KV1 – реле контроля трехфазной сети
  • контакты №18,19,20 – предназначены для контроля аварийных цепей в мотор приводах 
Если произошла неисправность в мотор приводе, на них поступает напряжение и работа реле блокируется.
  • S1 – это что-то вроде кнопки, с помощью которой можно подать сигнал и принудительно заблокировать работу AVR-02 
Вдруг вам понадобится провести какие-либо пусконаладочные работы. Здесь можно использовать модульный вариант от ИЭК КМУ11.
  • SB1 – кнопка Reset 
Нужна для сброса, после поступления сигнала на контакты №18,19,20. Нажимаете ее и работа реле восстанавливается.
  • КМ4 – промежуточное реле 
Благодаря его контактам, напряжение на катушки может поступать как от двух вводов, так и от генератора. Можно использовать тип РК-1Р.

Рассмотрим три алгоритма работ и три ситуации для данного АВР.

Ввод №1 и ввод №2 исправны

Первый ввод является основным, второй – резервным. Устройство посредством контактов А1,В1,С1 через защитный автомат QF2 следит за напряжением на вводе-1.
То же самое происходит по вводу-2, через контакты А2,В2,С2.

Так как на всех этих контактах все в норме, AVR-02 должен подать напряжение на катушку КМ. Как это происходит?

Контакт 1 и 11 формируют сигнал управления посредством реле К5. Данное реле К5, если уровень напряжения нормален на обоих вводах, должно включить ввод№1.
То есть находится в том положении, как на изначальной схеме. Напряжение через него попадает на 10 контакт и идет до катушки КМ4. Это промежуточное реле. Его контакты обозначены КМ4.1 и КМ4.2

Реле срабатывает, замыкая свои контакты и напряжение через них попадает на 22-й контакт. Далее AVR включает реле К1. Через него и контакт №24 фаза достигает катушки включения КМ1. При этом другие реле К2,К3,К4 остаются разомкнутыми.

Алгоритм №2 — ввод №1 неисправен

Напряжение на вводе №1 исчезло. AVR-02 видит, что на А1,В1,С1 напряжения нет, зато на А2,В2,С2 оно есть. Поэтому К5 переключается в позицию №11.

Далее U с ввода-2 поступает через 11 на 10 и потом вся схема повторяется как было рассмотрено ранее.

Только в этом случае происходит замыкание не К1, а К2. И соответственно катушки контактора КМ2.

При этом устройство следит за тем, чтобы напряжение на №13,14,15 отсутствовало. Дабы не получилось встречного включения питания (при залипании контактов и восстановлении эл.снабжения).

Если же напряжение хотя бы на одном из разъемов 13-14-15 есть, то катушка КМ2 никогда не сработает. Это и есть защита от встречного напряжения.

АВР с автозапуском генератора

А как будет запускаться генератор, если исчезнет питание с обоих вводов? Контакт №12 служит для подключения к АВР внешнего источника питания +12В.

Когда у вас пропало напряжение на двух вводах, все контакты К1,К2,К3 получаются в разомкнутом состоянии. При этом автоматически происходит замыкание внутреннего контакта реле К4. За счет этого, формируется сигнал запуска для генератора.

Большинство генераторов с возможностью АВР, управляют заслонкой своей собственной автоматикой. Для этого им нужен только сигнал на старт. Вы его как раз и подаете.

Если у вас этого нет, то можно смастерить такую систему самостоятельно.

После подачи импульса, происходит запуск ДГУ и его прогрев. Когда он прогрелся, напряжение на реле KV1 достигает нормы. KV1 представляет из себя, что-то вроде реле защиты трехфазных двигателей.

Оно необходимо для контроля напряжения 3-х фазной сети (правильное чередование фаз и их номинальное значение). Подойдет например такое - CKF-317.

После срабатывания, реле KV1 замыкает свой контакт KV1.1 и напряжение достигает разъема №16. Также U поступает на контакт №9 (он управляет внутренними цепями AVR) и №22.

AVR это видит и подает сигнал на замыкание реле К3 и катушки КМ3. После чего включаются силовые контакты пускателя генератора КМ3.1 Вся нагрузка запитывается от генератора.

Ввод№1+генератор (резерв)

Ну и напоследок рассмотрим чаще всего применяемую схему АВР для частного дома – ввод№1+генератор.

Далеко не все имеют два независимых ввода, плюс еще и ДГУ. Зато наличие отдельно генератора у владельцев особняков, не такая уж и большая редкость.

Основное эл.снабжение осуществляется от первого ввода. Принцип работы здесь такой же как и рассмотренный выше.

При изменение параметров напряжения на выходе за его номинальные значения (резко упало или повысилось, исчезло), происходит смена источника оперативного напряжения. Контакт КМ3.1 размыкается, а контакт КМ3.2 замыкается.

Также размыкаются контакты 22 и 24. Пускатель QF2 выключается. Спустя три секунды AVR 02 дает сигнал на запуск генератора. После его прогрева, происходит замыкание контактов 22-26. Подается напряжение на катушку КМ2 и включается пускатель QF8.

Вся нагрузка переводится на генератор.

Если на первом вводе U вновь появилось или нормализовалось, то контакты 1-10 снова замыкаются и КМ3 включается. Через заданное время контакты на разъемах №22-№26 отключаются, а вслед за ними отключается и КМ2+QF8.

Опять же, спустя установленное время, происходит замыкание №22-№24, после чего включается КМ1 и QF2. Питание восстанавливается от основного ввода. При этом контакты 29-30 будут замкнуты пока генератор не охладится.

Время расхолаживания ДГУ лучше выставлять в районе 3-5 минут.

Статьи по теме

Как подключить генератор к сети дома » сайт для электриков

Меры безопасности

Основной опасностью при операциях с генератором является его непосредственное включение в электрическую сеть. Нельзя выполнять подключение напрямую в розетку. Это может привести к росту тока на тех, участках цепи, которые не рассчитаны на такое увеличение. Должно учитываться и сечение кабеля, а также равномерность распределения нагрузки в помещениях.

При подключении генератора напрямую в розетку, разрушается кабельная изоляция, наступает ее преждевременный износ и перегорание токопроводящих жил. Поэтому, для правильного подключения устройства существует несколько основных способов.

Типы моделей электрогенераторов

В настоящее время существует ряд типов электрических генераторов. Среди них:

Асинхронные агрегаты. За счёт простоты и надёжности конструкции эти системы пользуются большим спросом. Важные узлы надёжно спрятаны от воздействия влаги и пыли. Их разумно эксплуатировать при выполнении сложных задач и интенсивных нагрузках. В качестве питания для электрических

РадиоКот :: Автозапуск бензогенератора

РадиоКот >Схемы >Цифровые устройства >Автоматика >

Автозапуск бензогенератора

В данной статье предлагается к повторению  устройство, которое осуществляет автоматический запуск двигателя бензогенератора при пропадании подачи электроэнергии потребителям. Устройство собрано на базе микроконтроллера ATtiny2313A.

В связи с большой стоимость комерческих решений было решено собрать самодельное устройство, которое давольно таки хорошо себя зарекомендовало.

Схема показана на рисунке:

Алгоритм работы устройства автозапуска генератора:

После подачи питания +12 вольт в устройство автозапуска (УА) , УА начинает контролировать городскую сеть 220 вольт. При отсутствии напряжения в городской сети примерно через 10 секунд, УА начинает процедуру:

1. УА отключает городскую сеть (т.е пускатель городской сети разъединяется ) и подаёт звуковой сигнал
2. УА вытягивает «подсос» с помощью привода сервомотора
3. УА включает зажигание
4. УА включает стартер двигателя
5. УА выключает стартер двигателя

Далее УА ждет 10 секунд пока двигатель наберет обороты, затем и подключает напряжение вырабатываемое генератором. После этого УА продолжает контролировать напряжение во внешней городской сети. При появлении напряжения 220 вольт во внешней городской сети , УА через 20 секунд глушит двигатель генератора и переключает внутреннюю сеть дома на напряжение городской сети.

Если двигатель не запустился с первого раза, УА производит запуск двигателя еще 4 раза. Если и в этом случае двигатель не запустился, УА прекращает контролировать городскую сеть и производит индикацию «Ошибка» и подаёт звуковой сигнал.

Устройство автозапуска имеет возможность установки режима работы «зима /лето» (в режиме «зима» производится прогрев двигателя – 3 минуты). Устройство автозапуска имеет возможность установки режима работы «двойное время работы стартера». В режиме «двойное время работы стартера» время работы стартера увеличивается в два раза). Также УА имеет функцию охлаждение двигателя перед остановкой.

Фото готовой платы:

Фото готового устройства:

Плата была вмонтирована в корпус Z104.

Ссылка на видео работы данного устройства:  https://youtu.be/3_6PWAZdnoE

Ещё одна ссылка на видео: https://youtu.be/IwMBzesCjJM

 

Спасибо за внимание :)

Файлы:
Схема pdf
Прошивка
Фотография
Печаткая плата под ЛУТ

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Электрические схемы автоматического генератора

| Размеры Magnum

Таблицы синхронизации реле

Время реле вашего AGS может отличаться от показанного на следующих одностраничных диаграммах. Определите вашу версию ME-AGS, а затем найдите фактическую временную последовательность реле на основе соответствующих таблиц времени реле ниже:

ME-AGS-N и ME-AGS-S: Менее версии 4.1: Relay-Timing-Table-less than-Rev-4.1-3-10-09.pdf
ME-AGS-N и ME-AGS- S: Rev 4.1 и 4.2: Relay-Timing-Table-Rev-4.1-and-4.2-3-relay-10-09-09.pdf
ME-AGS-N: Rev 5.0 и выше: ME-AGS-N Руководство пользователя 64-0039 Rev B
ME-AGS-S: Rev 5.0 и выше: ME-AGS-S Owner's Manual 64-0004 Rev C

Выберите ниже марку генератора, чтобы найти схему на одной странице для подключения к AGS.

Briggs & Stratton
Схема электрических соединений серии

EmPower
Модель системы домашнего генератора 040234 - Схема электрических соединений 15 кВт
Схема электрических соединений PowerBoss (7 кВт)

Чемпион
Модели генераторов

: 46512, 46565, 41535 и 41552 Схема электрических соединений

Контроллеры DynaGen
Схема подключения

ES52
Схема подключения GSC300

EPS (источник питания двигателя)
Схема электрических соединений дизельного генератора

EPS 20 кВт
Схема электрических соединений дизельного генератора EPS 2120
Схема электрических соединений дизельного генератора EPS 2277
Генератор EPS с системой Smart Start

Generac
Схема электрических соединений резервного генератора

с воздушным охлаждением
Схема электрических соединений генератора ECO 6 кВт

.Электрические схемы

для легковых и грузовых автомобилей Загрузить с практическим руководством

Что такое электрическая схема:

Схема электрических соединений (также известная как принципиальная схема или электронная схема) - это графическое изображение электрической цепи. На нем показаны различные компоненты схемы в виде упрощенных и стандартных пиктограмм, а также силовые и сигнальные соединения (шины) между устройствами. Расположение компонентов и соединений на схеме обычно не соответствует их физическому расположению в готовом устройстве.

Схема подключения автомобиля

включает электрические схемы для автомобилей и электрические схемы для грузовиков.

Программное обеспечение для электрических схем CAR:

Mercedes-Benz WIS / EPC:

http://www.obdii365.com/wholesale/2017-09-mb-star-sd-c4-hdd.html

W-I-S net 2017.04: Информационная система для семинаров

EPC.net 2017.04: Электронный каталог запчастей

Обеспечивает полный вид электрической схемы в автомобиле, схемы расположения компонентов и метода обслуживания.Вам нужно ввести номер шасси, после чего вы получите подробные данные о производстве, конфигурации двигателя и модели автомобиля.

Porsche PET 7.3 электронный каталог запчастей:

http://www.obdii365.com/wholesale/porsche-pet-73.html

Каталог запчастей Porsche позволяет вводить VIN-номер машины и проводить фильтрацию, используя его, но при этом номер кузова не учитывается, то есть программа Porsche определит VIN-номер модели и модельный год (используя первые 11 символов VIN), остальные нужно выбирать самостоятельно.Это означает, что программа Porsche легко переваривает номера VIN с придуманными последними цифрами, что может привести к ошибкам в идентификации агрегатов.

BMW ETK 3.1.30 Каталог запчастей BMW Electronic:

http://www.obdii365.com/wholesale/bmw-electronic-parts-catalog-etk.html

BMW ETK содержит весь спектр запчастей, предлагаемых для продажи BMW Group, и предназначен для облегчения поиска необходимых запчастей (автомобильные и мотоциклетные), расходных материалов и аксессуаров.Добавлен в прайс-лист в BMW ETK Local с помощью ETK Admin.
Для этого в вашем распоряжении различные функции поиска, такие как поиск по названию, по номеру детали и т. Д. Кроме того, система предлагает подробную информацию по конкретным деталям, а также возможность создания так называемого списка деталей нашел запчасти.

Audi VW Skoda Seat Электронная сервисная информация ELSAWIN 5.2:

http://www.obdii365.com/wholesale/elsawin-52-electronic-service-information-for-audi-vw-skoda-seat.html

ELSAWIN 5.2 для Audi-VW-SKODA-SEAT содержит полную информацию по ремонту в основном новых автомобилей 1986-2011 гг., Электрические схемы 1992-2009 гг., В т.ч. подробное описание технологии ремонта, электрические схемы, кузовные работы, каталог запчастей для гарантийной замены, особенно. информация о новых и старых машинах

Land Rover электронный калатог:

http://www.obdii365.com/wholesale/land-rover-microcat-electronic-parts-selling-system.html

Система продажи электронных компонентов Microcat для Land Rover, последняя версия - 2013.07, поддерживает несколько транспортных средств. Он включает в себя информацию по всем сериям Land Rover и за разные годы.

электрические схемы для грузовиков:

Clark ForkLift (PartProPlus) Электронные каталоги запасных частей:

http://www.obdii365.com/wholesale/clark-forklift-partproplus-electronic-spare-parts-catalogs.html

Интерфейс программы запчастей Clark Fork Lift очень простой и удобный, есть поиск по модели, серийным номерам, списку применимости детали, так как программа содержит сервисные бюллетени.

John Deere Каталог запчастей:

http://www.obdii365.com/wholesale/john-deere-power-systems-cd.html

Технические руководства по компонентам John Deere, руководства по эксплуатации и обслуживанию John Deere, руководства по ценам на обслуживание, каталог запчастей John Deere, John Deere PowerTech.

Hitachi Каталог запчастей:

http://www.obdii365.com/wholesale/hitachi-parts-catalogue-2013.html


Каталог запчастей Hitachi 2013 для тяжелой строительной техники, каталог запчастей для оборудования Hitachi, типов оборудования, охватываемых Hitachi HOP 2013.

MAN большегрузный грузовик WIS / EPC:

http://www.obdii365.com/wholesale/man-mantis-2015-catalogue.html

(Mantis) 2015 Информационная система для мастерских Электронный каталог запчастей EPC V5.9.1.85

Каталог запчастей MAN MANTIS содержит полную информацию о запчастях для грузовиков, автобусов и различных шасси специального назначения, а также о двигателях MAN. В этом каталоге много фотографий, иллюстраций с подробным описанием компонентов оборудования.

Caterpillar ET 2017A V1.0 Техник по электронике:

http://www.obdii365.com/wholesale/caterpillar-et2017A-electronic-technician-diagnostic-software.html

Cat ET (Caterpillar ET) 2017A - это обновленная версия программы дилерского уровня для диагностики всего оборудования Caterpillar.

Эта программа работает с дилерским диагностическим сканером Caterpillar Communication Adapter, а также с другими адаптерами для диагностики, включая сканер Nexiq, программа предоставляет полную информацию при устранении неисправностей. При покупке программы Cat ET (Caterpillar ET) 2017A сразу вы получаете подробную и понятную инструкцию по ее активации.

Молодца:

Universal , схемы подключения для автомобилей:

Программа VVDI: http://www.obdii365.com/wholesale/vvdi-prog-programmer.html

Ktag: http://www.obdii365.com/wholesale/v2-23-ktag-ktm100-ecu-programming-tool.html

Kess v2: http://www.obdii365.com/wholesale/v5017-kess-v2-ecu-programmer-online-version.html

Free электрические схемы автомобиля скачать бесплатно:

https: // cardiagn.com / wiring /

Как читать автомобильные электрические схемы:

У электрических схем и дорожных карт много общего. Дорожные карты показывают, как добраться из точки «А» в точку «Б.» Однако вместо того, чтобы соединять межгосударственные, автомагистрали и дороги, на схеме электропроводки показаны все взаимосвязанные основные электрические системы, подсистемы и отдельные цепи. Еще одна их общая черта - это уровни детализации. Например, если вы посмотрите на дорожную карту Калифорнии, вы не сможете найти адрес в Лос-Анджелесе.Вы можете найти город или поселок, но не найдете конкретного адреса. Чтобы найти точное местоположение определенного дома или здания, вам понадобится подробная карта улиц или подключитесь к Интернету и воспользуйтесь Google Maps или функцией GPS на смартфоне.

Хотя эта электрическая схема Ford Mustang 1979 года устарела, навыки, необходимые для ее использования для диагностики электрической проблемы, ничем не отличаются от просмотра онлайн-схемы на автомобиле последней модели.К сожалению, нет инструкций относительно того, как на самом деле читать и / или интерпретировать большинство электрических схем, будь то в печатном виде, на DVD или в Интернете.

Электрические схемы и дорожные карты имеют много общего. Дорожные карты показывают, как добраться из точки «А» в точку «Б.» Однако вместо того, чтобы соединять межгосударственные, автомагистрали и дороги, на схеме электропроводки показаны все взаимосвязанные основные электрические системы, подсистемы и отдельные цепи. Еще одна их общая черта - это уровни детализации.Например, если вы посмотрите на дорожную карту Калифорнии, вы не сможете найти адрес в Лос-Анджелесе. Вы можете найти город или поселок, но не найдете конкретного адреса. Чтобы найти точное местоположение определенного дома или здания, вам понадобится подробная карта улиц или подключитесь к Интернету и воспользуйтесь Google Maps или функцией GPS на смартфоне.

То же самое (в меньшей степени) и со схемами подключения. На автомобилях, выпущенных до 1970-х годов, электрические схемы обычно содержались на одной или двух страницах в руководстве по обслуживанию.К 1980-м годам сложность автомобильной бортовой электроники изменилась, и в большинстве руководств по автомобилям было несколько страниц электрических схем, чтобы показать всю электрическую систему транспортного средства. В 1990-х годах печатные руководства по обслуживанию начали исчезать, и теперь руководства и электрические схемы можно найти на цифровых носителях или в Интернете. Есть один аспект электрических схем, который, к сожалению, остался неизменным. Им не хватает указаний относительно того, как их на самом деле читать. Подобно карте, электрические схемы будут иметь легенду, в которой прописаны символы и соглашения об именах, но не будет никаких инструкций.

Хотя интерактивные руководства по обслуживанию автомобилей написаны для «профессиональных» техников, каждый технический специалист должен был научиться читать и интерпретировать электрические схемы на определенном этапе своей карьеры. Конструкция и компоновка электрических схем не подходят для технических специалистов среднего или начального уровня, поскольку они начинают с простых для понимания схем, которые становятся все труднее читать и понимать. В этой статье мы рассмотрим другой подход и начнем с простых схем и схем подключения, а затем перейдем к более сложным схемам.Этот пошаговый процесс не только делает обучение чтению электрической схемы менее болезненным, но и способствует лучшему пониманию того, как работают электрические цепи. Чтобы стать более опытным во всем, в том числе в чтении электрических схем, требуется практика, и для этой цели также есть несколько сложных вопросов.

Лампочка, питаемая от батареи, иллюстрирует 3 вещи, которые должны работать все 12-вольтовые электрические цепи: питание, нагрузочное устройство и заземление.Хотя это может показаться очевидным, найти 3 элемента и все, что управляет схемой, на многостраничной схеме соединений - непростой процесс.

3 штуки

Упрощенная электрическая схема аккумулятора, лампочки и проводов проста для понимания. Однако, если бы эта же схема была более сложной и включала несколько реле, несколько источников питания и компьютер, управляющий всей схемой, получившуюся электрическую схему было бы гораздо сложнее читать.Быстрый обзор основных электрических схем облегчит понимание того, как они изображены на электрической схеме. Каждая электрическая цепь в автомобиле должна иметь три элемента для работы: 1) источник питания, 2) нагрузочное устройство и 3) заземление. Система зарядки и аккумулятор работают как источники питания и проходят по всему автомобилю с помощью множества проводов. Нагрузочные устройства - это просто все, что выполняет электрические работы и может включать в себя освещение, стартер, бортовые компьютеры, реле, электрические стеклоподъемники, вход без ключа и многие другие компоненты.Возврат заземления завершает электрический путь от положительной клеммы аккумулятора к нагрузочному устройству и обратно к отрицательной клемме аккумулятора. Если что-то из трех отсутствует, схема не будет работать, а электрические схемы представляют собой «карту», ​​помогающую определить, какой из трех элементов отсутствует.

В дополнение к 3 вещам, необходимо управлять устройствами нагрузки. Некоторые устройства нагрузки включаются или выключаются путем управления их источником питания, в то время как другие управляются путем включения или выключения заземления.Наиболее распространенный сценарий - использование электронного блока управления транспортного средства или ЭБУ для заземления реле, которые, в свою очередь, управляют устройствами нагрузки. Процесс определения того, как управляется нагрузочное устройство, а также его источники питания и заземления, можно определить с помощью электрической схемы. Чтобы изучить логический процесс чтения сложных схем подключения, мы начнем с простой схемы противотуманных фар.

Рисунок 1 не типичен для электрических схем, приведенных в руководстве по обслуживанию.Схема противотуманных фар показана как во включенном, так и в выключенном состоянии и использует цветные линии, чтобы показать наличие питания. Зеленая пунктирная линия показывает, как электричество возвращается к отрицательной клемме аккумулятора после подачи питания на противотуманные фары.

На Фиг.1 представлена ​​простая электрическая схема, показывающая схему противотуманного освещения. Схема состоит из аккумуляторной батареи, предохранителя на 20 А (используется для защиты цепи), переключателя (расположен на передней панели) и двух противотуманных фар. Возвраты на землю показаны символом земли в виде вертикальной линии с тремя горизонтальными линиями.Не на всех схемах подключения показаны провода заземления, и предполагается, что символы заземления обозначают провода, которые подключены к отрицательной клемме аккумулятора. Эта диаграмма необычна тем, что наличие 12 вольт иллюстрируется схемой как во включенном, так и в выключенном состоянии. Красные линии указывают на наличие 12 вольт, а черные линии представляют собой сторону заземления цепи, которая подключается к отрицательной клемме аккумулятора. В части схемы «ВЫКЛ. Цепь» показано, что 12 вольт от аккумуляторной батареи, через предохранитель и до выключателя разомкнутой приборной панели.В нижней части схемы показан выключатель на приборной панели в замкнутом состоянии, подключение аккумулятора к фарам и их включение. Это также иллюстрирует один аспект закона Киршоффа, согласно которому нагрузочное устройство (устройства) будет использовать всю мощность (12 вольт) в цепи, так как напряжение на отрицательной клемме аккумулятора и на стороне заземления противотуманных фар близко к 0,0. вольт. К сожалению, настоящие электрические схемы не обеспечивают ни одного из этих преимуществ, а автомобильные схемы последних моделей могут не изолировать цепи до такой степени - более вероятно, что они будут частью общей системы освещения.Цвет, если он вообще используется на схеме подключения, предназначен для идентификации отдельных цветов проводов, а не для обозначения силовой и заземляющей сторон цепи. Кроме того, электрические схемы всегда по умолчанию показывают нагрузочное устройство в выключенном состоянии, и технические специалисты должны представить себе наличие мощности во всей цепи при включенной и работающей нагрузке.

На рисунке 2 показано, что реле было добавлено в цепь противотуманных фар. Вместо использования переключателя, показанного на рисунке 1, реле теперь контролирует высокий ток в амперах, необходимый для работы ламп.Переключатель на приборной панели используется для подачи питания на катушку управления реле, которая подключает питание от аккумулятора к противотуманным фарам через контакты с высоким током внутри реле.
Реле, подобные этому, используются во многих 12-вольтовых автомобильных цепях. Обычно они управляются компьютером и обеспечивают питание различных устройств нагрузки. Эти реле могут иметь 4 или 5 клемм. Пятая клемма указывает на то, что реле является переключаемым, с пятой клеммой нормально замкнутой (подает питание), когда реле выключено.Четырехконтактные реле обеспечивают питание только при включении.

Имеется неотъемлемая проблема с конструкцией схемы противотуманных фар, как показано на рисунке 1. Эти конкретные противотуманные фары требуют большой силы тока (8 ампер каждая, или всего 16 ампер) от аккумулятора для работы и этой высокой электрической нагрузки. должен пройти через все провода и переключатель на передней панели, чтобы добраться до огней. Провода, и особенно переключатель, должны быть прочными, чтобы выдерживать большой ток.Простым решением является добавление 12-вольтового реле, как показано на рис. 2. Реле заменяет выключатель для тяжелых условий эксплуатации и обеспечивает соединение с высоким током между противотуманными фарами и аккумулятором. Переключатель на приборной панели по-прежнему является частью общей схемы, но теперь он должен переключать только катушку управления реле малой силы тока (0,3 А) вместо противотуманных фар высокой силы тока. Выключатель на приборной панели и провода, соединяющие его с цепью, могут быть меньше, потому что реле подключает аккумулятор к фарам, а не выключатель.

Управляющая катушка внутри реле представляет собой электромагнит, и когда клемма 4 реле подключается к заземлению переключателем на приборной панели, катушка находится под напряжением и опускает контакты с высоким током внутри клемм 1 и 2 реле. Эта диаграмма показывает цепь в выключенном положении и более типична для реальной схемы подключения, поскольку техник должен визуализировать, где присутствует мощность в цепи, когда свет включен.

Хотя на рис. 2 показана базовая схема использования реле для работы в цепи с высоким током, он имеет отношение к современной электронике, используемой в современных автомобилях.Многие автомобильные цепи управляются автомобильным PCM (модулем управления мощностью), который не может напрямую управлять сильноточными нагрузками. Использование нескольких реле решает эту проблему, поскольку PCM должен только включать и выключать реле с низким током.

На рис. 3 показана более сложная схема противотуманных фар, в которую добавлено второе реле. Конструкция этой схемы предотвращает включение противотуманных фар, если переключатель зажигания не находится в рабочем или вспомогательном положении, независимо от того, включен ли переключатель на приборной панели.

Схема электрических соединений, изображенная на рисунке 3, показывает, как добавление второго реле к цепи противотуманных фар улучшает ее функциональность. Реле №1 обеспечивает питание реле №2, то же самое реле, которое изображено на предыдущей схеме. Реле № 1 управляется выключателем зажигания и позволяет работать противотуманным фарам только тогда, когда выключатель зажигания находится в положении «вспомогательное оборудование» или «работа». Если ключ зажигания находится в положении «замок» или «выключено» или полностью вынут из замка зажигания, на реле № 2 не подается питание.Это предотвращает непреднамеренное включение противотуманных фар, даже если переключатель на передней панели остается включенным. Эта схема более типична для электрических схем, найденных в руководстве по обслуживанию. Провода идентифицируются по цвету, но нет цвета, указывающего на наличие питания; цепь показана в выключенном состоянии, а клеммы реле обозначены номерами.

Самый эффективный способ научиться читать и использовать электрические схемы - это практика. Имея это в виду, следующие три практических вопроса проверят ваши знания и способность читать и интерпретировать электрические схемы.Мы вместе рассмотрим первые два вопроса, а на третий оставим вам ответ.

A Схемы электрических соединений двигателя Вопросы

Вопрос 1. Этот вопрос относится к рисунку 3. Когда ключ зажигания находится в положении «Acc», а приборная панель выключена, какие номера клемм на реле №1 и №2 будут иметь 12 вольт? Рисунок номер три типичен для электрических схем, которые можно найти в руководстве по обслуживанию. Реле и переключатели показаны в их «разомкнутом» положении, и цвет не используется для обозначения наличия питания или заземления.При чтении любой электрической схемы начните с известного источника питания (12 В), обычно с положительной клеммы аккумулятора. Реле №1, клемма 3, напрямую подключено к аккумулятору через 20-амперный предохранитель. Клемма 1 идет к замку зажигания и в положении «Accy» также будет иметь 12 вольт (КРАСНЫЙ провод к замку зажигания и ORN провод между переключателем и реле). Клемма 2 является постоянным заземлением катушки управления реле. Реле включено, и клеммы 3 подключены к 4 через контакты с высоким током.

Клеммы реле №2 с напряжением 12 В: 1 (КРАСНЫЙ / БЕЛЫЙ) и 3 (BRN), которые получают питание от клеммы 4 реле №1. Клеммы 1 и 2 подключаются через катушку управления малой силой тока реле, поэтому на клемму 2 подается питание, потому что переключатель на приборной панели разомкнут. Если бы переключатель на приборной панели был замкнут, на клемме 2 было бы 0 вольт, потому что она подключена к массе, а реле было бы «включено». На клемму 4 нет питания, потому что реле выключено.

На этой электрической схеме показана схема охлаждающего вентилятора для последней модели автомобиля.Схема имеет три реле, управляемые модулем управления мощностью автомобиля (PCM), которые управляют вентиляторами в низко- или высокоскоростном режимах. Провода идентифицируются по цвету. Клеммы реле охлаждающего вентилятора также обозначаются буквой и цифрой.

Вопрос 2. Проследите путь, по которому подается питание и заземление для каждого охлаждающего вентилятора в высокоскоростном режиме.

Вопрос 2 использует более сложную электрическую схему, чем та, которая использовалась для первого вопроса.На рисунке 4 представлена ​​типичная автомобильная электрическая схема, на которой показана схема вентилятора системы охлаждения радиатора. Два предохранителя (40 и 10 ампер) питают цепь и напрямую подключены к аккумуляторной батарее автомобиля (всегда горячий). Есть три реле, которые подключают питание к охлаждающим вентиляторам и управляют низкой и высокой скоростью. Реле контролируются модулем управления мощностью транспортного средства или PCM. Схема также содержит примечания относительно маркировки компонентов, их физического расположения и информацию о том, какие другие электрические схемы являются частью общей схемы.Катушки управления реле выглядят немного иначе, чем те, что показаны на рисунке 3. Резистор показан (заштрихованная линия) и используется для предотвращения скачков напряжения, достигающих PCM, когда реле работает. В остальном реле работают так же, как на Рисунке 3.

ПРИМЕЧАНИЕ : Эта цепь работает от 12 вольт. Однако, когда двигатель работает, рабочее напряжение составляет 14 вольт или напряжение зарядки, обеспечиваемое генератором переменного тока.

Три реле вентилятора охлаждения определяют пути питания и заземления к вентиляторам охлаждения.Чтобы оба вентилятора охлаждения работали в высокоскоростном режиме, PCM заземляет обе клеммы 42 и 33 (реле управления низкими и высокими оборотами вентилятора охлаждения). Если клемма № 33 блока PCM заземлена, провод DK BLU становится заземлением для управляющей катушки реле № 3 охлаждающего вентилятора на клемме B4. Это включает реле, потому что на клемму C6 постоянно подается питание от предохранителя на 10 А. КРАСНЫЙ провод на клемме C4 реле подключается к предохранителю охлаждающего вентилятора на 40 А, а при включенном реле подключается к клемме B6 внутри реле.БЕЛЫЙ провод от реле (клемма B6) подключается к правому охлаждающему вентилятору и обеспечивает питание. Правый вентилятор системы охлаждения имеет постоянное заземление на ЧЕР проводе. При 14 В (двигатель работает) на БЕЛОМ проводе и заземлении на ЧЕР проводе правый вентилятор системы охлаждения работает на высокой скорости.

Левый вентилятор системы охлаждения получает питание от предохранителя на 40 А на КРАСНОМ проводе реле № 1 вентилятора системы охлаждения (клемма B3). Блок управления реле низкоскоростного вентилятора охлаждения блока PCM (42) заземлен PCM, обеспечивающим заземление на проводе клеммы B1 (DK GRN) на реле № 1 вентилятора охлаждения.На том же реле клемма C3 получает питание от предохранителя 10a на проводе ORN. При подаче питания на C3 и заземлении a B1 реле срабатывает и соединяет клеммы реле B3 с C1, обеспечивая питание левого охлаждающего вентилятора по синему проводу LT. СЕРЫЙ провод от левого вентилятора системы охлаждения является массой, но только тогда, когда реле № 2 охлаждающего вентилятора включается заземлением управления высокоскоростным реле PCM на клемме C10 на синем проводе DK. Реле № 2 соединяет СЕРЫЙ провод левого вентилятора системы охлаждения с ЧЕРНЫМ проводом (номер клеммы не указан).ЧЕР провод заземляет левый вентилятор системы охлаждения, и он работает на высокой скорости.

Мы рассмотрели ответы и проанализировали вопросы 1 и 2. Ответ на вопрос 3 зависит от вас.

Вопрос 3. Проследите путь, по которому подается питание на каждый охлаждающий вентилятор в низкоскоростном режиме. Определите цвета проводов, реле и клеммы реле, на которые подается питание во время работы вентилятора. Проследите обратный путь заземления для реле и охлаждающих вентиляторов - определите цвета проводов и клеммы реле, используемые на стороне заземления цепи.

Ответ на вопрос 3

Чтобы понять, как работает тихоходный вентилятор, поможет краткий обзор теории электричества. В параллельной цепи (наиболее распространенный тип, используемый в автомобилях) все нагрузочные устройства работают от системного напряжения. Например, когда охлаждающие вентиляторы работают в высокоскоростном режиме, каждый имеет 14 В от предохранителя на 40 А. Последовательная схема работает иначе. При последовательном подключении двух нагрузочных устройств они делят доступное напряжение между ними. В низкоскоростном режиме охлаждающие вентиляторы подключены последовательно, и каждый вентилятор работает от 7 вольт - это половина напряжения системы в 14 вольт.

Во время работы вентилятора на малой скорости управление реле низкой скорости PCM заземлено, включая реле № 1 вентилятора охлаждения. С заземлением на клемме реле B1 (провод DK GRN) и питанием на C3 катушка управления реле соединяет контакты с высоким током (клеммы B3 и C1). Он подключает питание (14 В) от предохранителя 40a (КРАСНЫЙ провод) к проводу LT BLU, идущему к левому охлаждающему вентилятору. СЕРЫЙ провод от левого вентилятора системы охлаждения идет к контакту C8 реле №2. Реле № 2 охлаждающего вентилятора не срабатывает PCM в режиме низкой скорости, а соединение реле C8 - B9 нормально замкнуто.БЕЛЫЙ провод на реле № 2 охлаждающего вентилятора (B9) идет к правому охлаждающему вентилятору, обеспечивающему 7 В (половину 14 В) для питания вентилятора. Реле № 3 охлаждающего вентилятора не работает при малой скорости вращения вентилятора. ЧЕРНЫЙ провод от правого вентилятора обеспечивает заземление ОБОИХ вентиляторов. Поскольку вентиляторы подключены последовательно, они делят системное напряжение (14 вольт) поровну между собой, и оба работают от 7 вольт, заставляя их работать на низкой скорости.

(источник: http://www.searchautoparts.com/automechanika-chicago/commitment-training/how-read-automotive-wiring-diagrams)

.Схема подключения

- подробное руководство

Что такое электрическая схема?

Схема соединений - это визуальное представление компонентов и проводов, связанных с электрическим соединением. Эта графическая диаграмма показывает нам физические связи, которые очень легко понять в электрической цепи или системе. Одна электрическая схема может обозначать все соединения, тем самым сигнализируя об относительных местоположениях.Использование схемы соединений положительно распознается в проектах по производству или поиску и устранению неисправностей электрооборудования. Это может предотвратить множество повреждений, которые даже подорвут электрическую схему.

В этой статье мы узнаем некоторые интересные факты о схеме подключения , их важности и полезном онлайн-инструменте, то есть Edraw Max, для их быстрого рисования.

Источник изображения : smartdraw.com

Почему мы используем электрические схемы?

Электрические схемы широко используются в производстве схем или других проектах электронных устройств. Компоновка облегчает общение между инженерами-электриками, проектирующими электрические схемы и реализующими их. Фотографии также пригодятся при ремонте. Он показывает, была ли установка спроектирована и реализована надлежащим образом, подтверждая регуляторы безопасности.

Схема соединений также может быть полезна при ремонте автомобилей и строительстве домов. Например, домостроитель может легко найти правильное расположение осветительных приборов и электрических розеток, чтобы избежать дорогостоящих дефолтов или любых нарушений норм.

Преимущества схем подключения:

Составление электрической схемы дает несколько преимуществ, как указано ниже.

  • Диаграммой легко поделиться даже в электронном виде.
  • Процесс создания диаграммы быстрый и допускает обычное построение.
  • Доступ к сотням и тысячам символов подключения делает схему более понятной.
  • Диаграмму легко редактировать в зависимости от различных условий.
  • Соответствующий инструмент обеспечивает точное размещение символов, что невозможно сделать вручную или другими способами.

Тип схемы подключения

С использованием различных символов электрическая схема в основном состоит из трех основных типов. Все, что связано с электрической системой, можно отобразить на одной из диаграмм, чтобы убедиться, что соединения работают правильно.Его три основных вида заключаются в следующем.

A. Принципиальные схемы

Схематические диаграммы показывают схему цепи с ее впечатлением, а не подлинным изображением. Они предоставляют только общую информацию и не могут использоваться для ремонта или проверки цепи. Функции различного оборудования, используемого в схеме, представлены с помощью принципиальной схемы, символы которой обычно включают вертикальные и горизонтальные линии.Однако известно, что эти линии показывают поток системы, а не ее провода.

B. Схемы электрических соединений

Схема соединений представляет исходную и физическую схему электрических соединений. Схема подключения на картинке с разными символами показывает точное расположение оборудования во всей цепи. Это гораздо более полезно в качестве справочного руководства, если кто-то хочет узнать об электрической системе дома.Его компоненты показаны на картинке, чтобы их было легко идентифицировать.

C. Изображение

Это наименее эффективная схема среди электрических схем. Часто это фотографии, прикрепленные к подробным чертежам или этикеткам физических компонентов. Картинка даже не пытается быть четкой или эффектной. Человек, хорошо разбирающийся в схемах электропроводки, может понять только изображения.

Схема подключения

Принципиальная схема VS

Концепция может сбивать с толку, поскольку схема соединений указывает на физическую компоновку или расположение компонентов, тогда как схемы показывают функции различного оборудования, используемого в цепи.

Давайте посмотрим на его сходства и различия.

Сходства

Отличия

Как читать электрические схемы: символы, которые вы должны знать

Чтобы прочитать схему соединений , вы должны знать различные используемые символы, такие как основные символы, линии и различные соединения.

Стандартные или основные элементы, используемые в электрической схеме, включают источник питания, заземление, провода и соединения, переключатели, выходные устройства, логический вентиль, резисторы, свет и т. Д.

  1. Переключатель - Переключатель на электрической схеме включает вспомогательные символы, такие как размыкающий переключатель, размыкающий переключатель, двухпозиционный переключатель, переключатель DPST, переключатель DPDT и т. Д.
  2. Батарея - Батарея представляет собой более одной ячейки для обозначения электрической энергии. Причем работает от постоянного напряжения.
  3. Резистор - резистор показывает ограничение протекания тока. Он используется вместе с конденсатором в цепи синхронизации.
  4. Провод и соединение - Обозначения проводов и соединений включают в себя провод, соединенный провод и несоединенный.Соединенные провода обычно образуют двутавровое соединение, тогда как несоединенные провода представляют собой просто пересекающиеся несоединенные провода.
  5. Конденсатор - Конденсатор - это накопитель электрического заряда. Символ используется с резистором, а также может отображаться как фильтр для пропускания сигналов переменного тока и блокировки сигналов постоянного тока.
  6. Логический вентиль - Логический вентиль - это своего рода сигнал процесса, используемый для представления истинного (высокий, 1, вкл., + Vs) или ложного (низкий, 0, выкл., OV).Он также содержит субсимволы, такие как AND, NOT, NAND, NOR и OR.
  7. Semiconductor - Полупроводниковые символы являются интеллектуальными и обычно используются для обозначения таких компонентов, как биполярный, MOSFET, управляемый выпрямитель, управляемый переключатель, диод, диод, симистор и т. Д. преобразуется в кинетическую энергию.
  8. Динамик - Динамик представляет собой цифровой вход, преобразованный в аналоговые звуковые волны. Это одна из важнейших частей различных продуктов, таких как телефоны и телевизоры.
  9. Индуктор - Это компонент электрической цепи, обладающий индуктивностью. Он также включает в себя различные символы, такие как индуктивность передатчика положения, половина индуктивности, взаимная индуктивность и т. Д.

Примеры электрических схем

1.Схема 2-ходового переключателя

В схеме двухпозиционного переключателя необходимо управлять потоком мощности (включение / выключение) на нагрузку (лампа, свет, потолочный вентилятор, розетка и т. Д.). Однако типичная схема будет включать 3-проводной кабель называется Ромекс. Он состоит из белого, черного и неизолированного медных проводов.

A. Белый провод = нейтраль

B. Черный провод = провод под напряжением или провод питания

С. Оголенный медный провод = Земля

Подключение двухпозиционного переключателя требует, чтобы вы управляли горячим или черным проводом для включения и выключения нагрузки.

На схеме поясняется, что источник питания входит слева. Здесь единственный провод, то есть черный провод, управляется двухпозиционным переключателем. К одному винту на боковой стороне двухпозиционного переключателя подводится черный провод или провод под напряжением. Черный провод также идет от другого винта двухпозиционного переключателя, идущего к нагрузке.Комбинированные белые провода помогают продолжить цепь.

Источник изображения : how-to-wire-it.com

Также важно подключить коммутатор к заземляющему проводу. Зеленый винт представляет собой заземляющий провод для подключения, как показано ниже.

Источник изображения : инструкции по подключению.com

Теперь все оголенные медные или заземляющие провода подключены. Схема двухпозиционного переключателя, показанная ниже, поможет вам понять базовую концепцию подачи электроэнергии к нагрузке. Здесь вы должны воспринимать контролируемую нагрузку как свет.

Источник изображения : how-to-wire-it.com

2.Схема 3-ходового переключателя

В этом трехпозиционном переключателе также используется трехпроводной кабель Romex, идущий от источника. Между трехпроводным кабелем и трехпозиционными переключателями проходит также 4-проводный кабель. Трехжильный кабель содержит тот же провод, что и белый провод, черный провод и неизолированный медный провод, тогда как четырехжильный кабель содержит дополнительный красный провод, который также является горячим.

Источник изображения : инструкции по подключению.com

Левая коробка

Здесь левый винт в нижнем положении является стандартным и получает черный провод от 3-х проводного источника. Тем не менее, левый винт в верхней части получает черный провод от 4-проводной правой коробки.

Правый бокс

В нем левый винт в нижнем положении получает черный провод от 3-х проводной нагрузки.Левый винт в верхнем положении получает красный провод от 4-х проводной левой коробки. Его правый винт в верхней части получает черный провод от 4-проводной левой коробки.

Источник изображения : how-to-wire-it.com

3. Подключение к розетке

Стандартные розетки также являются дуплексными розетками.При подключении розетки необходимо выбрать один из нескольких вариантов. Вам понадобится трехжильный кабель в обеих розетках, чтобы подключить розетку (горячую. Кроме того, вам понадобится четырехжильный кабель, чтобы переключить верхнюю или нижнюю розетку.

Источник изображения : how-to-wire-it.com

Черный или горячий провод слева - это основной источник питания. Провод перевязан проводом, идущим к черному проводу и выключателю, который далее идет к розетке.

Источник изображения : how-to-wire-it.com

Как нарисовать электрическую схему в Edraw?

После того, как мы получили лучшее понимание основной концепции, теперь мы должны продолжить изучение того, как нарисовать схему подключения с помощью одного из лучших онлайн-инструментов - Edraw Max.Чтобы сделать схему подключения в Интернете, перейдите на официальный сайт Edraw и выполните следующие действия.

Шаг 2: Выберите Электротехника и Базовая электрическая. Поскольку создание электрической схемы - это электрическая концепция, вам необходимо выбрать Electrical Engineering на боковой панели.Это приведет вас к различным параметрам в главном интерфейсе, откуда вы должны перейти к Basic Electrical .

Шаг 3: Создайте шаблон. Следующим шагом будет создание вашего шаблона. Во-первых, вам нужно выбрать значок + Basic Electrical . Этот выбор приведет вас к основному интерфейсу создания диаграммы, как показано ниже.

Шаг 4: Сделайте схему соединений с помощью различных инструментов.

В этом окне вы можете создать свою электрическую схему, выбирая различные символы коммутационной схемы из библиотеки символов. Доступны различные символы, такие как путь передачи, квалификационные символы, полупроводниковые устройства, переключатели и реле и другие необходимые электрические символы.

Статьи по теме

.

% PDF-1.2 % 675 0 объект > endobj xref 675 26 0000000016 00000 н. 0000000871 00000 п. 0000001891 00000 н. 0000002109 00000 п. 0000002249 00000 н. 0000002367 00000 н. 0000002489 00000 н. 0000002512 00000 н. 0000007331 00000 н. 0000007354 00000 н. 0000012124 00000 п. 0000012147 00000 п. 0000016939 00000 п. 0000016962 00000 п. 0000021837 00000 п. 0000021860 00000 п. 0000026450 00000 п. 0000026573 00000 п. 0000026596 00000 п. 0000031369 00000 п. 0000031392 00000 п. 0000035056 00000 п. 0000035079 00000 п. 0000037444 00000 п. 0000000928 00000 н. 0000001869 00000 н. трейлер ] >> startxref 0 %% EOF 676 0 объект > endobj 699 0 объект > поток Hc'''l eas9 @ $ ## 7CѕCCH * 00s (1DX9D> Cn} XKN򸸏t + ul {m [yk`C1 ݙ ~ ֺ L,;, Ew; 73L΋ [! LDt} cJfǒS] 4 \ w8jm% aSY ^ 0p`Ň6ML`ZoELAA ƘrP% ٩ '\ fE9ˑb͸] ʲ \ "jzMYj, q̰'Y 䨦 WQrM) Ys P; $ ֕ 4 e PEMQk-Żm: gT ̂Ye3s.ã6˹z-NwMVPk0 = 0fknq

.Электрические схемы TOYOTA

- Схема электрических соединений автомобиля

TOYOTA Avalon, Avensis, Aygo, Camry, Carina 2, Corolla, Corona, FJ40, Hiace, Hilux, Land Cruiser, Prius, RAV4, Supra, Тундра, Ярис - Схема электрических соединений

Схема подключения TOYOTA Avalon 2006 года

Схема электрических соединений кнопочного запуска, иммобилайзера двигателя и блокировки рулевого управления АВАЛОН

Схема наземной точки АВАЛОН

Схема источника питания АВАЛОН

Схема подключения зарядного устройства АВАЛОН

Схема электрических соединений системы зажигания АВАЛОН

Схема электрических соединений системы управления двигателем АВАЛОН

Схема подключения TOYOTA AVENSIS

Схема подключения стоп-сигнала TOYOTA AVENSIS

Схема запуска TOYOTA AVENSIS

Схема зарядки TOYOTA AVENSIS

Схема подключения системы зажигания TOYOTA AVENSIS

Схема подключения управления двигателем TOYOTA AVENSIS

Электрические схемы Toyota Aygo

Схема подключения фар AYGO

Схема внутреннего освещения AYGO

Панель управления AYGO и схема освещения переключателя

Схема подключения фонаря заднего хода AYGO

Схема подключения AYGO ABS

Схема подключения TOYOTA Camry

Схема подключения TOYOTA CAMRY Power Sorce

Схема подключения двигателя и зажигания TOYOTA CAMRY

Схема зарядки TOYOTA CAMRY

Схема управления двигателем TOYOTA CAMRY

Схема передних фар TOYOTA CAMRY

Схема подключения автоотключения подсветки TOYOTA CAMRY

Схема подключения указателей поворота и аварийной сигнализации TOYOTA CAMRY

Схема подключения стоп-сигнала TOYOTA CAMRY

Схема подключения подсветки TOYOTA CAMRY

Электрические схемы TOYOTA Corolla 2004 года

Схема подключения зарядки COROLLA

Схема подключения системы зажигания и запуска COROLLA

Схема подключения источника питания COROLLA

Схема подключения TOYOTA CARINA 2

Схема подключения зарядной системы CARINA 2

Электрическая схема очистителя фар CARINA 2

Схема подключения внутреннего освещения CARINA 2

Электрическая схема источника питания CARINA 2

Схема электрических соединений системы предварительного нагрева CARINA 2

Схема подключения TOYOTA CORONA

Схема подключения задних противотуманных фар TOYOTA CORONA

Электрическая схема обогревателя заднего стекла TOYOTA CORONA

Схема задних фонарей и освещения TOYOTA CORONA

Схема подключения указателей поворота и аварийной сигнализации TOYOTA CORONA

Схема подключения TOYOTA FJ40 1970-1980

Электрические схемы TOYOTA HIACE

Схема подключения АБС HIACE

Схема подключения доводчика двери HIACE

Схема подключения противотуманных фар HIACE

Схема подключения фар HIACE

Схема подключения внутреннего освещения HIACE

Схема подключения стоп-сигнала HIACE и HOM

Схема подключения задних фонарей HIACE

Схема подключения указателей поворота и аварийной световой сигнализации HIACE


Электрические схемы TOYOTA HILUX (2004)

Схема подключения резервного питания HILUX

Схема подключения зарядного устройства HILUX

Схема подключения иммобилайзера двигателя HILUX

Схема подключения передней противотуманной фары HILUX

Схема подключения фар HILUX

Электрические схемы TOYOTA Land Cruiser 1996 года

2004 TOYOTA PRIUS электрические схемы

Схема подключения автоматического управления освещением PRIUS

Схема передних противотуманных фар PRIUS

Схема передних стеклоочистителей и омывателей PRIUS

PRIUS Регулятор уровня света фар 2 EWD

Схема электрических соединений системы автоматического выключения PRIUS Light

Электрическая схема предупреждения о ремнях безопасности PRIUS

Схема подключения стоп-сигнала PRIUS

Схема подключения TOYOTA RAV4

Схема подключения задней противотуманной фары TOYOTA RAV4

Схема головного света TOYOTA RAV4

Схема подключения подсветки TOYOTA RAV4

Схема задних фонарей TOYOTA RAV4

Схема подключения указателей поворота и аварийной световой сигнализации TOYOTA RAV4

Принципиальная схема TOYOTA RAV4 Hom и передних противотуманных фар

Схема подключения очистителя фар и обогревателя сиденья TOYOTA RAV4

Схема подключения стоп-сигнала TOYOTA RAV4

Схема подключения Toyota Supra

Схема подключения резервного освещения SUPRA

Схема электрических соединений противотуманной фары SUPRA

Схема подключения фар SUPRA

Схема внутреннего освещения SUPRA

Схема автоматического выключения света SUPRA

Схема подключения стоп-сигнала SUPRA

Схема указателей поворота и аварийной сигнализации SUPRA

Схема подключения 2005 Toyota Tundra

Схема подключения противотуманных фар Toyota Tundra без ДХО

Схема подключения зарядки Toyota Tundra

Фара Toyota Tundra с ДХО Схема электрических соединений

Схема крыши Toyota Tundra Moon

Схема подключения стеклоподъемника Toyota Tundra

Схема подключения Toyota Tundra SRS

Схема подключения задних фонарей Toyota Tundra

Схема подключения TOYOTA YARIS 2007 года

Схема электрических соединений резервного освещения Yaris

Электрическая схема управления двигателем Yaris

Электрическая схема Yaris Ignition

Схема электрических соединений обогревателя заднего стекла Yaris

Схема электрических соединений зеркала дистанционного управления Yaris

Схема электрических соединений пуска Yaris

.

Chrysler - электрические схемы

Все схемы подключения, размещенные на сайте, собраны из бесплатных источников и предназначены исключительно для информационных целей.

DODGE STRATUS, CHRYSLER CIRRUS, PLYMOUTH BREEZE 1995-2000

Система зарядки аккумулятора

Система запуска двигателя

Фары

Электронная система зажигания

Система впрыска топлива и зажигания

Схема цепочки звуковых сигналов

Принципиальная схема фары

Электродвигатель вентилятора радиатора

Схема нагревателя

Схема контура кондиционирования воздуха

Стоп-сигналы, указатели поворота, сигнализация

Задние фонари

Схема стартера

Радио

Система управления двигателем

Система запуска и зарядки

Кондиционер и обогреватель, включая охлаждающий вентилятор

Система фар и противотуманных фар

Сигнализация

Стеклоочиститель

Внешнее освещение

Задние фонари

Система внутреннего освещения

Электрические окна

Центральный замок

Система круиз-контроля

Аудио система

Система зарядки аккумулятора, система запуска

Система управления двигателем

Передача инфекции

Антиблокировочная система ABS

Система кондиционирования воздуха

Система освещения

Круиз-контроль

Электрооборудование автомобилей CHRYSLER Town & Country, DODGE Caravan, PLYMOUTH Voyager (модели 1984 - 1995)

Электрооборудование CHRYSLER Neon, DODGE Neon и PLYMOUTH Neon (модели 1995 - 1999 гг.)

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.