ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Солнечные электростанции для дома


Солнечная электростанция на дом 200 м2 своими руками / Хабр

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно. Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.



Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее. Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?


Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку. Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа. Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций


Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности. То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации. Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор. Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии. В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах. Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер?


Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту. Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечной электростанции, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут запросы в комментариях.

Солнечный контроллер – это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12В. И АКБ изготавливаются кратно 12В, так уж повелось. Простые системы на 1-2 кВт мощности работают от 12В. Производительные системы на 2-3 кВт уже функционируют от 24В, а мощные системы на 4-5 кВт и более работают на 48В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим у нас есть система на 48В и солнечные панели на 36В (панель собрана кратно 3х12В). Как получить искомые 48В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой. Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передает в АКБ. Это упрощенно. Есть контроллеры, которые могут со 150-200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ – Широтно-Импульсная Модуляция) и MPPT (Maximum Power Point Tracking – отслеживание точки максимальной мощности). Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT – контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно бОльшим КПД, но и стоят дороже.

Как выбрать солнечные панели?


На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии. От прозрачности EVA-пленки зависит, сколько энергии попадет на элемент и сколько энергии выработает панель. Если пленка окажется бракованной и со временем помутнеет, то и выработка заметно упадет.

Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория – это Калифорнийская Энергетическая Комиссия, а вторая лаборатория Европейская – TUV. Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае, присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Мой выбор солнечной электростанции


Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам. Для начала, цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до 8 часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети. При этом, основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник. Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей также продают всё сопутствующее оборудование, поэтому я начал поиск отталкиваясь от солнечных батарей. Один из солидных брендов – TopRay Solar. О них есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует и далеко не на последних местах, то есть можно брать. Кроме того, фирма-продавец солнечных панелей TopRay, также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство – вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчет резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности. Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300-350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт*ч в месяц. Вот тут и задумаешься над проведением энергетического аудита. И начнешь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.
Не буду томить, остановился я на более дешевой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

  1. Солнечная батарея TopRay Solar 280 Вт Моно – 9 шт
  2. Однофазный Гибридный инвертор на 5 кВт InfiniSolar V-5K-48 – 1 шт
  3. Аккумулятор AGM Парус HML-12-100 – 4 шт

Дополнительно, мне было предложено приобрести профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить. Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.

Что даёт солнечная электростанция?


Этот комплект может выдать до 5 кВт мощности в автономном режиме – именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5кВт+5кВт=10 кВт на фазу. Или можно сделать трехфазную систему, но я пока довольствуюсь и этим. Инвертор высокочастотный, а потому достаточно легкий (порядка 15 кг) и занимает немного места – легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить еще столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше – максимум я видел 2400 Вт. Оптимальный угол – это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100А*ч 48В, то есть запасено 4,8 кВт*ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более, чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM лучше не насиловать. Итак, у меня есть половина емкости, а это 2,4 кВт*ч, то есть порядка 8 часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем и еще останется половина емкости АКБ на аварийный режим. Утром уже встанет солнце и начнет заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить еще аккумуляторов и генератор. Ведь зимой солнца совсем мало и без генератора будет не обойтись.

Начинаю собирать


Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня порядка 25-30 метров и я заранее проложил два гибких провода сечением 6 кв.мм, так как по ним будет передаваться напряжение до 100В и ток 25-30А. Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями. Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30мм болтов, и они являются своеобразным «крючком» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по 3 панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115В без нагрузки и снизить ток, а значит можно выбрать провода меньшего сечения. Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения – называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надежный контакт и быстрое замыкание\размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение и подключены последовательно для обеспечения напряжения 48В. Далее, они подключены к инвертору кабелем с сечением 25 мм кв. Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально – в инверторе установлены довольно емкие конденсаторы и они начинают заряжаться в момент подключения к аккумуляторам. Максимальная мощность инвертора – 5000 Вт, а значит ток, который может проходить по проводу от АКБ будет составлять 100-110А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ, можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам. Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении, солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности, от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора. Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм… После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции


После запуска солнечной электростанции, я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500-2100 Вт во время работы, посудомоечная машина потребляет 400-2100 Вт. Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днем: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга. На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии – эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power). То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счет солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живем как прежде, пока соседи ходят за водой с ведрами.

Но есть в наличии дома солнечной электростанции и нюансы:

  1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов, все следы просто смывались бы дождями. Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.
  2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более, инвертор включает вентиляторы активнее и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе, ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.
  3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение/отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищенному 25 порту SMTP, а все современные почтовые сервисы, вроде gmail.com или mail.ru работают по защищенному порту 465. То есть сейчас, фактически, оповещения по почте не приходят, а хотелось бы.

Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.

Заключение


Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый Год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило. Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие цифры выработки электричества безмерно радуют, а возможность убрать от компа UPS зная, что даже при отключении электроэнергии всё продолжит работать – это приятно. Ну а когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги. В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция – это игрушка.

виды электростанций, необходимое оборудование для дома, сроки службы

Повышение стоимости электричества, а также сложности с подключением и обслуживанием энергосетей заставляют потребителей искать альтернативные решения. Дешевый способ обеспечения энергонезависимости — установка бензиновых и дизельных генераторов, но для их работы нужно недешевое топливо. Дорогое решение — солнечные электростанции. Они стоят немало, но энергию дают дармовую.

Принцип работы

Солнечные станции для дома состоят из фотоэлементов, способных преобразовывать лучи светила в электроэнергию. Видов ФЭП очень много, но по-настоящему эффективными считаются лишь несколько из них. Остальные находятся на начальных стадиях разработки и их перспективы туманны.

Сегодня наиболее распространены панели на основе кремния. В них фотоэлементы состоят из двух слоев этого материала. Каждый из них имеет свои физические свойства. Когда на ФЭП попадают фотоны, между слоями кремния возникает разность потенциалов, заставляющая двигаться электроны. Так появляется электрический ток.

Кремниевые фотоэлементы могут быть монокристаллическими и поликристаллическими. Первые дают больше энергии, но при этом стоят дороже.

Отличить разные типы ФЭП друг от друга можно по внешнему виду. Монокристаллические панели имеют вид прямоугольников с обрезанными углами. Форма у поликристаллических элементов квадратная.

Повышенная производительность первого типа ФЭП объясняется чистотой кристаллов кремния. КПД таких панелей достигает 22%. Выработанная энергия собирается в аккумуляторах. Она расходуется в ночное время и пасмурные дни. Накопительные батареи могут быть различной емкости. Их защиту от перезаряда обеспечивает контроллер, в котором имеются выходы, позволяющие подключать приборы, потребляющие постоянный ток.

Еще один важный элемент системы — инвертор. Этот прибор переводит постоянный ток в переменный, необходимый для работы электроприборов в домашней сети. Также имеется распределительный щиток. С его помощью владелец автономной солнечной электростанции для дома может перераспределять мощность на различные приборы и менять напряжение.

Типы солнечных электростанций

Существует несколько разновидностей солнечных электростанций. Большинство из них предназначены для получения энергии в промышленных масштабах. Наиболее распространены следующие виды:

  • Башенная. В основе ее работы лежит принцип испарения воды при нагреве солнечной энергией. Вокруг башни находятся отражатели, концентрирующие свет на ее вершине, где расположен резервуар с жидкостью, окрашенный в темный цвет. Они крепятся на опорах с автоматической регулировкой ориентации относительно солнца. Работают солнечные электростанции такого типа следующим образом: полученный от нагрева пар направляется в турбогенератор, находящийся в основании центральной конструкции, и там происходит выработка энергии.
  • Тарельчатые. Принцип работы таких станций похож на башенные, но конструктивно они сильно различаются. Здесь каждый модуль имеет собственный приемник и отражатель, направленный на него. Последний состоит из сборки зеркал. Основа системы — двигатель Стерлинга, соединенный с турбиной. Особенность тарельчатых станций в том, что здесь каждый модуль самостоятельно производит электричество.
  • Параболоцилиндрические. В них также происходит нагрев теплоносителя за счет света солнца. Только отражатели здесь имеют форму параболического цилиндра длиной до 50 метров. Перед ними на штангах закреплена труба с жидкостью. Нагретый теплоноситель через теплообменник превращает воду в пар, вращающий турбину генератора.
  • Фотоэлектрические. Это без преувеличения самые популярные станции. Их используют как в промышленности, так в частных домах. В их основе кремниевые элементы, обладающие достаточной производительностью для снабжения электроэнергией небольших объектов. Такие батареи часто устанавливают на крышах домов.

В конце 30-х годов прошлого века во Франции была запатентована идея солнечно-вакуумной электростанции. Ее реализовали лишь в 1982 году в Испании. В основе системы лежит движение воздуха, возникающее из-за разницы температур. Широкое распространение она не получила из-за небольшой производительности.

Особенности бытовых батарей

В нашей стране такие решения для организации автономного энергоснабжения имеет смысл использовать в южных регионах. Только там есть достаточное количество солнечного света. В северных районах необходимое освещение получить сложно или вовсе невозможно.

Конечно, существуют энергостанции, способные работать в любых условиях. У них неплохой КПД, вот только стоят они очень дорого. Учитывая их цену, дешевле использовать бензиновые генераторы.

Бытовые солнечные электростанции, как правило, почти не используются для обеспечения током всей энергосистемы дома. Их устанавливают, чтобы питать основные бытовые приборы: холодильник, стиральную машину, телевизор.

Электростанции на солнечных батареях для дома делятся на 2 категории: постоянные и временные. Первые аккумулируют энергию постоянно, чем обеспечивают бесперебойную работу всех приборов в здании. Вторые дают временную автономность в случае необходимости. То есть, постоянной подпитки электросети дома от них нет.

По мощности бытовые солнечные батареи делятся на 3 типа:

  • Слабые. К ним относятся все станции, вырабатывающие меньше 5 кВт в сутки. Такие системы используются как резервные источники питания. Они способны обеспечить током лишь небольшое количество приборов. Для полноценного электроснабжения их недостаточно.
  • Средние. Это батареи, способные генерировать более 5кВт энергии. В теории этого должно хватать для полного обеспечения семьи из 3 человек. Однако, на практике такой производительности все еще недостаточно.
  • Мощные. Такие устройства генерируют более 10 кВт. Их достаточно для обеспечения комфортной жизни в частном доме. На самом деле постоянно будут использоваться около 7 кВт. Остальная энергия будет в запасе. Если владелец дома решил обеспечить энергонезависимость дома, то ему нужно выбирать солнечные батареи именно такой мощности.

Существуют и более производительные станции. Но использовать их для энергоснабжения частных домов нецелесообразно. Домашние солнечные батареи и так стоят недешево, а производительные будут очень дорогими. При этом бо́льшая часть генерируемого электричества использоваться не будет.

Сроки службы

Солнечные батареи нужно регулярно обслуживать. Речь идет о замене выходящих из строя компонентов. У хорошей станции срок службы отдельных элементов составляет:

  • Солнечная панель — 40 лет.
  • Крепежные элементы батареи не имеют срока службы. Они могут быть повреждены только во время стихийного бедствия.
  • Инвертор. В зависимости от качества устройства оно может прослужить от 3 до 20 лет. Китайские и российские модели работают всего 3−4 года.
  • Контроллер заряда. Хороший образец функционирует без поломок в течение 15 лет.
  • Фотоэлектрический инвертор должен проработать десятилетие. Дешевые аналоги из Китая имеют срок службы в 3 раза меньше.
  • Аккумуляторы. Гелевые модели в среднем работают 4 года. Автомобильные батареи — не больше 2 лет.

Стоимость солнечных панелей пусть медленно, но постоянно снижается. Электронные компоненты для построения домашних станций становятся надежнее. Возможно, что через десятилетие батареи на ФЭП будут вполне доступными по цене и их обслуживания будет обходиться гораздо дешевле.

Солнечная электростанция на дом площадью 200 м² своими руками — Техника на vc.ru

{"id":75752,"url":"https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami","title":"\u0421\u043e\u043b\u043d\u0435\u0447\u043d\u0430\u044f \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u0441\u0442\u0430\u043d\u0446\u0438\u044f \u043d\u0430 \u0434\u043e\u043c \u043f\u043b\u043e\u0449\u0430\u0434\u044c\u044e 200 \u043c\u00b2 \u0441\u0432\u043e\u0438\u043c\u0438 \u0440\u0443\u043a\u0430\u043c\u0438","services":{"facebook":{"url":"https:\/\/www.facebook.com\/sharer\/sharer.php?u=https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami","short_name":"FB","title":"Facebook","width":600,"height":450},"vkontakte":{"url":"https:\/\/vk.com\/share.php?url=https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami&title=\u0421\u043e\u043b\u043d\u0435\u0447\u043d\u0430\u044f \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u0441\u0442\u0430\u043d\u0446\u0438\u044f \u043d\u0430 \u0434\u043e\u043c \u043f\u043b\u043e\u0449\u0430\u0434\u044c\u044e 200 \u043c\u00b2 \u0441\u0432\u043e\u0438\u043c\u0438 \u0440\u0443\u043a\u0430\u043c\u0438","short_name":"VK","title":"\u0412\u041a\u043e\u043d\u0442\u0430\u043a\u0442\u0435","width":600,"height":450},"twitter":{"url":"https:\/\/twitter.com\/intent\/tweet?url=https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami&text=\u0421\u043e\u043b\u043d\u0435\u0447\u043d\u0430\u044f \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u0441\u0442\u0430\u043d\u0446\u0438\u044f \u043d\u0430 \u0434\u043e\u043c \u043f\u043b\u043e\u0449\u0430\u0434\u044c\u044e 200 \u043c\u00b2 \u0441\u0432\u043e\u0438\u043c\u0438 \u0440\u0443\u043a\u0430\u043c\u0438","short_name":"TW","title":"Twitter","width":600,"height":450},"telegram":{"url":"tg:\/\/msg_url?url=https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami&text=\u0421\u043e\u043b\u043d\u0435\u0447\u043d\u0430\u044f \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u0441\u0442\u0430\u043d\u0446\u0438\u044f \u043d\u0430 \u0434\u043e\u043c \u043f\u043b\u043e\u0449\u0430\u0434\u044c\u044e 200 \u043c\u00b2 \u0441\u0432\u043e\u0438\u043c\u0438 \u0440\u0443\u043a\u0430\u043c\u0438","short_name":"TG","title":"Telegram","width":600,"height":450},"odnoklassniki":{"url":"http:\/\/connect.ok.ru\/dk?st.cmd=WidgetSharePreview&service=odnoklassniki&st.shareUrl=https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami","short_name":"OK","title":"\u041e\u0434\u043d\u043e\u043a\u043b\u0430\u0441\u0441\u043d\u0438\u043a\u0438","width":600,"height":450},"email":{"url":"mailto:?subject=\u0421\u043e\u043b\u043d\u0435\u0447\u043d\u0430\u044f \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u0441\u0442\u0430\u043d\u0446\u0438\u044f \u043d\u0430 \u0434\u043e\u043c \u043f\u043b\u043e\u0449\u0430\u0434\u044c\u044e 200 \u043c\u00b2 \u0441\u0432\u043e\u0438\u043c\u0438 \u0440\u0443\u043a\u0430\u043c\u0438&body=https:\/\/vc.ru\/tech\/75752-solnechnaya-elektrostanciya-na-dom-ploshchadyu-200-m2-svoimi-rukami","short_name":"Email","title":"\u041e\u0442\u043f\u0440\u0430\u0432\u0438\u0442\u044c \u043d\u0430 \u043f\u043e\u0447\u0442\u0443","width":600,"height":450}},"isFavorited":false}

63 394 просмотра

Солнечные электростанции для дома, готовые решения, комплекты.

Мы подобрали готовые комплекты солнечных электростанций (готовые решения) для того, чтобы Вам было проще определиться с выбором оборудования.

Солнечные электростанции, готовые решения, что в комплекте.

Солнечные электростанции позволяют организовать электроснабжение объектов, которые не имеют подключения к центральной сети электроснабжения. Данный вид организации электроснабжения позволяет обеспечить объекты необходимым количеством электроэнергии в любом месте. Солнечная электростанция представляет собой набор фотоэлектрических элементов, аккумуляторных батарей и инвертором (контроллер + инвертор). Количество и мощность необходимых компонентов рассчитывается в зависимости от необходимого количества энергии потребляемого объектом в течении суток. Стоимость и услуги монтажа солнечных батарей смотрите по ссылке.

Как работает солнечная электростанция

Солнечная электростанция накапливает в течении светового дня электроэнергию в аккумуляторных батареях, в ночное время для питания объекта используется энергия аккумуляторов, для преобразования 12В в 220В применяют инверторы. В дневное время часть энергии идет на заряд аккумуляторов, а другая часть непосредственно на питание объекта.
Возможно использовать в этой системе бензиновый генератор в качестве резервного источника в зимнее время и пасмурные дни, когда солнечной энергии будет не достаточно для заряда аккумуляторных батарей. Возможна установка генераторов с автоматическим запуском, для минимального участия человека в процессе переключения источников питания. Так же солнечные электростанции дополняются ветрогенераторными установками для получения большего количества электроэнергии в пасмурные дни и ночное время. Все представленные комплекты солнечных электростанций возможно комплектовать в различных вариациях оборудования.

Предложенные комплекты солнечных электростанций включают в себя все необходимые устройства для организации автономного источника питания.

Автономные солнечные электростанции

Современное общество давно оценило преимущество альтернативных способов получения энергии, таких как ветровые и солнечные электростанции. У них масса преимуществ: их можно установить в любом городе, любом доме и даже на балконе в квартире. Они являются экологически чистыми и используют неиссякаемые ресурсы, что минимизирует вред для окружающей среды до нуля. Стоимость небольшой солнечной электростанции вполне адекватная и приемлема для среднестатистического россиянина с нормальным годовым доходом. Стоимость покупки окупается за время работы в несколько раз, так как солнечная энергия абсолютно бесплатна и не требует никаких дополнительных финансовых вложений от владельца. Такие автономные солнечные электростанции являются гарантом обеспечения электроснабжения независимо от энергосети и проблем коммунальных служб. Если использовать ее в сочетании с обычным электричеством, можно существенно сократить статью расходов на последнее.

А купить автономные солнечные электростанции по самой низкой стоимости можно в компании ИК «ЭнергоПартнер». Безупречная репутация надежного поставщика в сочетании с идеальным качеством и надежностью поставляемой продукции, низкими ценами и первоклассным обслуживанием просто не оставляет шансов на отказ. Компания предлагает, как готовые решения, с идеально выверенной и высчитанной эффективностью, подобранной под индивидуальные запросы клиента, так и модели, требующие самостоятельной сборки и расчетов. Любая такая электростанция представляет собой целый комплект устройств: аккумуляторов, солнечных панелей, контроллеров, инверторов и различных расходных материалов. Самостоятельно разобраться и правильно подобрать такой комплект достаточно проблематично, поэтому готовые решения – идеальный вариант для тех, кто не хочет забивать голову сложной терминологией и большим объемом сложных данных. Специалисты «Энергопартнер» помогут подобрать решение, максимально подходящее конкретному человеку с конкретными запросами и предпочтениями, а также размером бюджета, выделенного на покупку.

Так же рекомендуем прочитать статью на тему: "Расчет солнечных батарей и солнечных электростанций"

ТОП-5 крупнейших солнечных электростанций в мире

Эта статья была обновлена ​​04.11.19

* По состоянию на июнь 2017 года Китай и Индия стали ведущими разработчиками крупномасштабных солнечных проектов.

Спрос на солнечную энергию в США растет, несмотря на экономический спад, благодаря государственным финансовым стимулам, некоторому снижению доступности кредитов и растущему общественному признанию ее экологических преимуществ. Хотя крупнейшие электростанции коммунального назначения находятся за пределами Соединенных Штатов, 2 завода, которые в настоящее время строятся в Калифорнии и Нью-Мексико, уравновесят европейское доминирование в крупномасштабных проектах, связанных с солнечной энергией.

Почетное упоминание - Проект солнечной энергии Камути - 648 МВт - Индия

Завод в Камути, Тамил Наду, имеет мощность 648 мегаватт и занимает площадь в 10 квадратных километров. Это делает его крупнейшей солнечной электростанцией в одном месте, получившей название от солнечной фермы Topaz в Калифорнии, имеющей мощность 550 МВт.

http://www.businessinsider.com/india-has-built-the-worlds-largest-solar-power-plant-2016-11

Honorable Mention - Солнечный парк плотины Лунъянся - 850 МВт - Китай

Солнечная электростанция на плотине Лунъянся - последняя разработка в Китае в длинной череде крупномасштабных проектов в области солнечной энергетики.Солнечная ферма в городе Цыси на востоке провинции Чжэцзян недавно попала в известность об установке 300 гектаров солнечных панелей над рыбной фермой. По данным государственного информационного агентства Синьхуа, ферма будет вырабатывать 220 гигаватт-часов электроэнергии в год, что достаточно для 100 000 семей.

https://visibleearth.nasa.gov/view.php?id=89668

5а. Kurnool Ultra Mega Solar Park - 1000 МВт - Индия

С 900 МВт из 1000 МВт, уже введенных в эксплуатацию в парке Kurnool Ultra Solar Park, а остальные должны быть полностью введены в эксплуатацию в следующем месяце, он уже стал крупнейшим таким парком, опережающим 648 МВт солнечный парк, разработанный Адани в Тамил Наду и Солнечный парк Топаз 550 МВт в Калифорнии.

http://www.thehindu.com/todays-paper/tp-national/tp-andhrapradesh/with-kurnool-solar-park-state-takes-a-giant-leap/article18289685.ece

5б. Датунская солнечная электростанция, верхняя база - 1000 МВт - Китай

С завершенной фазой I мощностью 1 ГВт и общей мощностью 3 ГВт в 3 фазы. Солнечная электростанция Датун в Китае может стать крупнейшей солнечной электростанцией в мире после завершения строительства. Согласно государственной статистике, с июля 2016 года по январь 2017 года Datong произвел в общей сложности 870 миллионов ватт электроэнергии, что эквивалентно более 120 миллионам ватт в месяц выработки электроэнергии.

https://en.wikipedia.org/wiki/List_of_photovoltaic_power_stations

4. Парк солнечных батарей Нур - 1117 МВт - Марокко

Солнечная электростанция в Уарзазате (OSPS), также называемая Нурской электростанцией, - это комплекс солнечной энергии, расположенный в районе Драа-Тафилалет в Марокко, в 10 км от города Уарзазат в районе сельского совета Гессат. При мощности 1117 МВт это крупнейшая в мире концентрированная солнечная электростанция. С дополнительной фотоэлектрической системой на 72 МВт весь проект планируется произвести на пике мощности 1117 МВт после завершения и строится в три фазы и четыре части.Ожидается, что общая стоимость проекта составит 9 миллиардов долларов.

3. Солнечный парк Павагада - 1400 МВт - Индия

Парк солнечных батарей Павагада - это комплекс солнечных батарей мощностью 2 ГВт, который строится в Павагаде, район Тумкур, примерно в 180 км от Бангалора, штат Карнатака, Индия. Ожидается, что после завершения строительства она станет самой большой в мире солнечной электростанцией.

2. Солнечный парк в пустыне Тенгер - 1500 МВт - Китай

Солнечная электростанция мощностью 1547 МВт была установлена ​​в Чжунвэй, Нинся, на сегодняшний день является крупнейшей в мире солнечной батареей.В Китае ее называют «Великой солнечной стеной». Пустыня Тенгер - это засушливый природный регион, который занимает площадь около 36 700 км и находится в основном в автономном районе Внутренняя Монголия в Китае. Само солнечное поле покрывает 1200 км (3,2%) суши.

http://www.escn.com.cn/news/show-310093.html

1. Солнечный парк Бхадла - 2245 МВт - Индия

Площадь солнечного парка Бхадла около Джодхпура составляет более 4500 га, его мощность составляет 2245 МВт, и он будет запущен в декабре 2019 года.

Предыдущие крупнейшие сайты по состоянию на 2009 год

Солнечная электростанция Арнедо, Испания

Завод производит впечатляющие 34 ГВт-ч каждый год, что обеспечит электроэнергией 12 000 домохозяйств и предотвратит выброс 375 000 тонн CO2. Завод расположен на семидесяти гектарах и вмещает 172 000 панелей. Бюджет проекта составлял около 180 000 000 евро. Ла-Риоха, испанский регион, известный своим вином, уже покрывает 62% своей электроэнергии за счет возобновляемых источников.

Источник: Renewable Energy Magazine

.

Парк солнечных батарей Вальдполенц, Германия

Waldpolenz Solar Park, крупнейшая в мире тонкопленочная фотоэлектрическая (PV) система питания, построена на военной авиабазе к востоку от Лейпцига в Германии.Электростанция представляет собой солнечную энергетическую систему мощностью 40 мегаватт, в которой используется самая современная тонкопленочная технология. текущее время utc. Используется 550 000 тонкопленочных модулей First Solar, которые обеспечивают выработку 40 000 МВт электроэнергии в год. Инвестиционная стоимость солнечного парка Вальдполенц составляет около 130 миллионов евро.

Источник: Википедия

Фотоэлектрическая электростанция Моура, Португалия

Фотоэлектрическая электростанция Моура расположена в муниципалитете Моура, в Алентежу, Португалия, который является одним из самых солнечных регионов Европы, а также одним из самых экономически депрессивных регионов.Его строительство состоит из двух этапов: первый будет построен за 13 месяцев и завершен в 2008 году, а второй будет завершен к 2010 году, общая стоимость проекта составит 250 миллионов евро.

Электростанция будет иметь установленную мощность 46 МВт с общим количеством более 376 000 солнечных панелей. Почти 190 000 панелей (32 МВт) установлены на стационарных конструкциях, 52 000 (10 МВт) на одноосных трекерах, которые следуют за солнцем по небу, и еще 20 МВт мощности будут добавлены во время второй фазы проекта.Он займет площадь в 320 акров (130 гектаров), производя 88 ГВт-ч электроэнергии в год.

Источник: Википедия

Фотоэлектрический парк Пуэртольяно, Испания

Renovalia разработала эту электростанцию ​​в Пуэртольяно, Сьюдад-Реаль, где находится энергетический парк с установленной мощностью 50 мегаватт (МВт). Вырабатываемая здесь мощность эквивалентна годовому внутреннему потреблению электроэнергии примерно 39 000 домохозяйств. Вырабатываемая здесь энергия заменит теоретический сброс 84 000 тонн CO2 в год или 2.1 миллион тонн CO2 за 25 лет производства.

Источник: El Economista

Фотоэлектрический парк Olmedilla, Испания

Фотоэлектрический (PV) парк Olmedilla использует 162 000 плоских солнечных фотоэлектрических панелей для выработки 60 мегаватт электроэнергии в солнечный день. Строительство всего завода было завершено за 15 месяцев и обошлось примерно в 530 миллионов долларов по текущему обменному курсу. Olmedilla была построена с использованием обычных солнечных панелей, которые сделаны из кремния и имеют тенденцию быть тяжелыми и дорогими.

Источник: Scientific American

Солнечная ферма Rancho Cielo, США

Солнечная ферма Rancho Cielo - крупнейшая предлагаемая солнечная ферма в Соединенных Штатах. Он расположен в промышленном поселке Белен, штат Нью-Мексико, под названием Rancho Cielo, и, как ожидается, обеспечит большую часть энергии сообщества, когда он будет завершен. Ожидаемая стоимость строительства составляет 840 миллионов долларов, он обеспечит 600 МВт электроэнергии и будет охватывать территорию в 700 акров (280 га). Солнечная ферма будет использовать тонкопленочные кремниевые панели, которые будут строиться на месте.

Источник: Википедия

Солнечная ферма Топаз, США

Topaz Solar Farm - это солнечная фотоэлектрическая электростанция мощностью 550 мегаватт (МВт), которая будет построена First Solar, Inc. (производитель тонкопленочных кремниевых солнечных модулей) на равнине Карризо, к северо-западу от Калифорнийской долины, стоимостью более 1 миллиарда долларов. . 14 августа 2008 года Pacific Gas and Electric объявили о соглашении о покупке всей электроэнергии у электростанции.

Источник: Википедия

.

Как работает солнечная электростанция?

Солнечная электростанция - это объект любого типа, который преобразует солнечный свет либо напрямую, например, фотоэлектрические установки, либо косвенно, например, солнечные тепловые электростанции, в электричество.

Они бывают разных «вкусов», в каждом из которых используются отдельные методы, позволяющие использовать силу солнца.

В следующей статье мы кратко рассмотрим различные типы солнечных электростанций, которые используют животворный солнечный свет для производства электроэнергии.

1. Фотогальваника

Фотогальванические электростанции используют большие площади фотоэлементов, известных как фотоэлектрические элементы или солнечные элементы, для прямого преобразования солнечного света в полезную электроэнергию. Эти элементы обычно изготавливаются из кремниевых сплавов и являются технологией, с которой большинство людей знакомо - есть вероятность, что у вас есть один на вашей крыше.

Сами панели бывают разных форм:

- Кристаллические солнечные панели - как следует из названия, эти типы панелей сделаны из кристаллического кремния.Они могут быть монокристаллическими, поли- или поликристаллическими. Как показывает практика, монокристаллические версии более эффективны ( около 15-20%, ), но дороже, чем их альтернативы (как правило, имеют эффективность 13-16%, ), но со временем прогресс сокращает разрыв между ними.

- Тонкопленочные солнечные панели. Эти типы панелей состоят из ряда пленок, которые поглощают свет в различных частях электромагнитного спектра. Как правило, они изготавливаются из аморфного кремния (aSi), теллурида кадмия (CdTe), сульфида кадмия (CdS) и диселенида меди, индия (галлия).Этот тип панелей идеально подходит для применения в качестве гибких пленок на существующих поверхностях или для интеграции в строительные материалы, такие как кровельная черепица.

Эти типы станций вырабатывают электроэнергию, которая затем, как правило, напрямую подается в национальную сеть.

ФЭ-панель в Марке, Италия. Источник: CA 'Marinello 1 / Flickr

Эти типы электростанций обычно состоят из следующих основных компонентов: -

- Солнечные панели, преобразующие солнечный свет в полезное электричество.Они имеют тенденцию генерировать постоянный ток напряжением до 1500 В ;

- Этим предприятиям нужны инвесторы для преобразования постоянного тока в переменный ток

- У них обычно есть какая-то система мониторинга для контроля и управления заводом и;

- Они напрямую подключены к какой-либо внешней электросети.

- Если установка вырабатывает более 500 кВт и , они обычно также используют повышающие трансформаторы.

1.1 Как работает солнечная фотоэлектрическая электростанция?

Солнечные фотоэлектрические электростанции работают так же, как небольшие фотоэлектрические панели домашнего масштаба или крошечные фотоэлектрические панели на вашем калькуляторе, но на стероидах.

Большинство солнечных фотоэлектрических панелей изготовлено из полупроводниковых материалов, обычно из кремния. Когда фотоны солнечного света попадают на полупроводниковый материал, генерируются свободные электроны, которые затем могут течь через материал, создавая постоянный электрический ток.

Это известно как фотоэффект в физике. Затем постоянный ток необходимо преобразовать в переменный ток (AC) с помощью инвертора, прежде чем его можно будет напрямую использовать или подавать в электрическую сеть.

Фотоэлектрические панели отличаются от других солнечных электростанций, поскольку они используют фотоэффект напрямую, без необходимости в других процессах или устройствах.Например, не нужен жидкий теплоноситель, такой как вода, как в солнечных тепловых установках.

Фотоэлектрические панели не концентрируют энергию, они просто преобразуют фотоны в электричество, которое затем передается в другое место.

2. Солнечные тепловые электростанции

Солнечные тепловые электростанции, с другой стороны, фокусируют или собирают солнечный свет таким образом, чтобы генерировать пар для питания турбины и выработки электроэнергии. Солнечные тепловые электростанции также можно разделить на три различных типа: -

2.1 Линейные, параболические желобные солнечные тепловые и солнечные электростанции

Это наиболее распространенная форма солнечной электростанции, которая характеризуется использованием полей либо линейных U-образных параболических желобных коллекторов, либо солнечных тарелок. Эти типы объектов обычно состоят из большого «поля» параллельных рядов солнечных коллекторов.

Обычно они состоят из трех дискретных типов систем:

2.1.1. Системы параболических желобов

В параболических желобах используются отражатели в форме параболы, которые способны фокусировать на коллекторе от 30 до 100-кратных нормальных уровней солнечного света.Этот метод используется для нагрева особого типа жидкости, которая затем собирается в центральном месте для генерирования перегретого пара под высоким давлением.

Эти системы наклоняются, чтобы следить за солнцем в течение дня. Благодаря своей параболической форме отражатели такого типа способны фокусировать на коллекторе от 30 до 100 раз нормальной интенсивности солнечного света.

Самая долго действующая солнечная тепловая установка в мире, система производства солнечной энергии (SEGS) в пустыне Мохаве, Калифорния, является одной из таких электростанций.Первый завод, SEGS 1, был построен в 1984 году и проработал до 2015 года, а второй, SEG 2, работал с 1984 по 2015 год.

Пример системы параболического желоба. Источник: USA.Gov/Wikimedia Commons

Последняя построенная электростанция, SEGS IX, с мощностью производства электроэнергии 92 мегаватт (МВт) , была введена в эксплуатацию в 1990 году. Сегодня в настоящее время существует семь действующих станций SEGS с общей мощностью. 357 МВт - это делает его одной из крупнейших солнечных тепловых электростанций в мире.

2.1.2. Как это работает?

Эти солнечные тепловые электростанции работают за счет фокусировки солнечного света от длинных параболических зеркал на приемные трубки, которые проходят по длине зеркала в их фокусной точке. Эта концентрированная солнечная энергия нагревает жидкость, которая непрерывно течет по трубкам.

Эта нагретая жидкость затем направляется в теплообменник для кипячения воды в обычном паротурбинном генераторе для выработки электроэнергии.

2.2. Линейные концентрирующие системы

Линейные концентрирующие системы, иногда называемые отражателями Френеля, также состоят из больших «полей» зеркал, отслеживающих солнце, которые, как правило, выровнены в направлении север-юг для максимального улавливания солнечного света.Эта установка позволяет рядам зеркал отслеживать солнце с востока на запад в течение дня.

2.2.1. Как это работает?

Подобно своим собратьям с параболическими зеркалами, линейные концентрирующие системы собирают солнечную энергию с помощью длинных прямоугольных U-образных зеркал. Однако, в отличие от параболических систем, в линейных системах отражателей Френеля приемная труба размещается над несколькими зеркалами, чтобы обеспечить большую мобильность зеркал при отслеживании солнца.

В системах такого типа используется эффект линзы Френеля, который позволяет использовать большое концентрирующее зеркало с большой апертурой и коротким фокусным расстоянием.Такая установка позволяет подобным системам фокусировать солнечный свет примерно в 30 раз нормальной интенсивности.

2.3. Солнечные тарелки и двигатели

В солнечных тарелках также используются зеркала для фокусировки солнечной энергии на коллекторе. Они, как правило, состоят из очень больших спутниковых тарелок, покрытых мозаикой из маленьких зеркал, которые фокусируют энергию на приемнике в точке фокусировки.

2.3.1. Как это работает?

Подобно параболической и линейной системам, зеркальная поверхность в форме тарелки направляет и концентрирует солнечный свет на тепловом приемнике в фокусе антенны.Этот ресивер передает выделяемое тепло двигателю-генератору.

Наиболее распространенным типом теплового двигателя, используемого в системах тарелка / двигатель, является двигатель Стирлинга. Нагретая жидкость из приемника посуды используется для перемещения поршней в двигателе для создания механической энергии.

Эта механическая энергия затем поступает в генератор или генератор переменного тока для выработки электроэнергии.

Солнечные антенны / двигатели всегда направлены прямо на солнце и концентрируют солнечную энергию в фокусе антенны.Коэффициент концентрации солнечной тарелки намного выше, чем у линейных концентрирующих систем, и она имеет температуру рабочей жидкости выше 749 градусов Цельсия .

Электростанция с линейным отражателем Френеля. Источник: energy.gov

Электрогенерирующее оборудование можно установить либо непосредственно в центральной точке антенны (отлично подходит для удаленных мест), либо собрать ее с множества тарелок и выработать электричество в центральной точке.

У.S. Army разрабатывает систему 1,5 МВт на складе армии Туэле в штате Юта с 429 солнечными батареями двигателя Стирлинга.

3. Башни солнечной энергии

Башни солнечной энергии представляют собой интересный метод, в котором от сотен до тысяч плоских зеркал, отслеживающих солнце (гелиостатов), отражают и концентрируют солнечную энергию на центральной башне. Этот метод позволяет концентрировать солнечный свет в 1500 раз , чем это обычно возможно только от прямых солнечных лучей.

Интересный пример такого типа электростанции можно найти в Юлихе, Северный Рейн-Вестфалия, Германия.Комплекс расположен на площади 18000 квадратных километров , на которой размещается более 2000 гелиостатов , которые фокусируют солнечный свет на центральной башне высотой 60 метров и высотой .

Министерство энергетики США и другие электроэнергетические компании построили и эксплуатировали первую демонстрационную солнечную электростанцию ​​недалеко от Барстоу, Калифорния, в 1980-х и 1990-х годах.

Некоторые в настоящее время также находятся в разработке в Чили.

Башня солнечной энергии Иванпа. Источник: Aioannides / Wikimedia Commons

Сегодня в США.С., в эксплуатации находятся три солнечные электростанции. Это объект солнечной энергии 392 МВт, Ivanpah в Айвенпа-Драй-Лейк, Калифорния, проект солнечной энергии 110 MВт Crescent Dunes в Неваде и 5 MW Sierra Sun Tower в пустыне Мохаве, Калифорния.

3.1. Как это работает?

Концентрированная солнечная энергия используется для нагрева воздуха в градирне до 700 градусов Цельсия . Тепло улавливается котлом и используется для производства электроэнергии с помощью паровой турбины.

Некоторые башни также используют воду в качестве теплоносителя. В настоящее время исследуются и испытываются более совершенные системы, в которых будут использоваться соли нитратов из-за их более высоких свойств теплопередачи и хранения по сравнению с водой и воздухом.

Возможность аккумулирования тепловой энергии позволяет системе производить электроэнергию в пасмурную погоду или ночью.

Эти солнечные электростанции идеально подходят для работы в районах с неблагоприятными погодными условиями.Они используются в пустыне Мохаве в Калифорнии и выдерживают град и песчаные бури.

4. Солнечный пруд

Солнечные прудовые солнечные электростанции используют бассейн с соленой водой, который собирает и накапливает солнечную тепловую энергию. Он использует технику, называемую технологией градиента солености.

Этот метод действует как тепловая ловушка в пруду, которую можно использовать напрямую или хранить для дальнейшего использования. Такая электростанция используется в Израиле на электростанции Бейт-ха-Арава с 1984 года.

Есть и другие примеры в Бхудже в Индии, которые были завершены в 1993 году.

Источник: Quora

4.1. Как это работает?

Солнечные пруды используют большой объем соленой воды для сбора и хранения солнечной тепловой энергии. Соленая вода естественным образом образует вертикальный градиент солености, известный как галоклин, с водой низкой солености наверху и водой высокой солености внизу.

Уровни концентрации соли увеличиваются с глубиной, и, следовательно, плотность также увеличивается от поверхности до дна озера, пока раствор не станет однородным на заданной глубине.

Принцип довольно прост. Солнечные лучи проникают в пруд и в конечном итоге достигают дна бассейна.

В обычном пруду или водоеме вода на дне водоема нагревается, становится менее плотной и поднимается вверх, создавая конвекционное течение. Солнечные пруды предназначены для того, чтобы препятствовать этому процессу, добавляя соль в воду, пока нижние уровни не станут полностью насыщенными.

Поскольку вода с высокой соленостью не смешивается легко с водой с низкой соленостью над ней, конвекционные потоки содержатся в каждом отдельном слое, и между ними происходит минимальное перемешивание.

Этот процесс концентрирует тепловую энергию и снижает потери тепла из воды. В среднем вода с высокой соленостью может достигать 90 градусов Цельсия , а слои с низкой соленостью поддерживают около 30 градусов Цельсия .

Эту горячую соленую воду можно откачать для использования в производстве электроэнергии, через турбину или в качестве источника тепловой энергии.

.

Типы, технологии и все о солнечной энергетической системе

Солнечная электростанция, также известная как солнечная энергетическая система, солнечная система, солнечная энергетическая система и солнечная установка. По сути, это современный метод производства электроэнергии с помощью солнечных батарей.

Эта система состоит из нескольких компонентов, включая солнечную панель для поглощения и преобразования солнечного света в электричество, солнечный инвертор для изменения электричества с постоянного на переменный, а также мониторинг системы, солнечную батарею и другие солнечные аксессуары для настройки рабочего места. система.

Установки солнечных электростанций

Другими словами, вы можете сказать, что солнечная энергетическая система основана на преобразовании солнечного света в электричество либо напрямую с помощью фотоэлектрической панели, либо косвенно с помощью концентрированной солнечной энергии (CSP).

.

Солнечная электростанция - Простая английская Википедия, бесплатная энциклопедия

Солнечные энергопоглощающие панели на звуковом барьере рядом с аэропортом Мюнхена.

Солнечная электростанция основана на преобразовании солнечного света в электричество либо напрямую с использованием фотоэлектрических элементов (PV), либо косвенно с использованием концентрированной солнечной энергии (CSP). Концентрированные солнечные энергосистемы используют линзы, зеркала и системы слежения для фокусировки большой площади солнечного света в небольшой луч. Фотогальваника преобразует свет в электрический ток с помощью фотоэлектрического эффекта. [1] Самой большой фотоэлектрической электростанцией в мире была установка CSP мощностью 354 МВт, расположенная в пустыне Мохаве, Калифорния. Другие крупные электростанции CSP включают в себя проект солнечной энергии Agua Caliente мощностью 250 МВт в Аризоне. [2] , Солнечная электростанция Сольнова (150 МВт, 250 МВт на момент завершения), [3] и солнечная электростанция Андасол (150 МВт), обе в Испании. [4]

Концентрированные солнечные электростанции впервые появились в 1980-х годах.Все чаще используется солнечная энергия. [5] [6]

.

Типы, модели, цена и комплектация 2020

Часто задаваемые вопросы о солнечной электростанции мощностью 1 МВт

Сколько киловатт или ватт в 1 мегаватт?

1 мегаватт равен 1 000 киловатт или 10 000 000 ватт.

Какая в среднем вырабатывается солнечная электростанция мощностью 1 МВт?

Солнечная система мощностью 1 кВт производит в среднем 4 блока в день в течение года. Соответственно, солнечная электростанция мощностью 1 МВт производит в среднем 4000 единиц в день.

Что такое модель OPEX?

Модель

OPEX (Операционные расходы) также называется Соглашением о закупке электроэнергии.В этой модели компания по установке солнечных систем установит полную систему за свой счет по соглашению на 10-25 лет. И вам придется платить за единицу ежемесячно.

Что такое модель CAPEX?

В модели CAPEX (капитальные затраты) стоимость установки солнечной системы будет полностью вашей. Вы должны будете оплатить стоимость установки компании одним выстрелом. После оплаты стоимости установки это будет ваша собственная солнечная электростанция.

Какая модель лучше OPEX или CAPEX?

Обе модели хороши. Если у вас богатая компания, вам следует вкладывать средства в капитальные затраты. В случае нехватки инвестиций лучше использовать модель OPEX. Потому что, если вы выберете модель CAPEX, вам придется заплатить большую сумму денег за один выстрел. Но в модели OPEX вы можете платить за единицу ежемесячно в течение 10-25 лет.

Для какого бизнеса подходит солнечная электростанция мощностью 1 МВт?

Где суточное потребление электроэнергии более 4000 единиц.

Могу ли я экспортировать излишки электроэнергии в правительство?

Да, конечно, вы можете экспортировать избыточное количество произведенной электроэнергии правительству (в сеть) через чистые измерения. И правительство внесет это в ваши предстоящие счета за электричество.

Как я могу установить солнечную электростанцию, чтобы продавать электроэнергию государству?

Govt. Индии объявляют тендеры на солнечную электростанцию ​​на базе PPA. В таких тендерах вам нужно предлагать самую низкую цену за единицу.

Какова ориентировочная стоимость солнечной электростанции мощностью 1 МВт?

Ориентировочная стоимость солнечной электростанции мощностью 1 МВт составляет ок. 4 крор.

Где мне установить солнечную установку мощностью 1 МВт?

Вы можете установить солнечную фотоэлектрическую установку мощностью 1 МВт в любом свободном от теней месте, где солнечный свет может проходить без каких-либо барьеров. Для установки солнечной станции мощностью 1 МВт требуется площадь 2,5 акра.

Сколько солнечных батарей требуется в солнечной системе мощностью 1 МВт?

Примерно 3000 панелей по 335 Вт каждая.

Сколько электроэнергии может производить солнечная электростанция мощностью 1 МВт?

Солнечная электростанция мощностью 1 мегаватт может вырабатывать в среднем 4000 единиц в день. Соответственно, он производит 1,20,000 единиц в месяц и 14,40,000 единиц в год.

Трудно ли поддерживать эффективность такой большой электростанции?

Нет, сохранить эффективность солнечной станции мощностью 1 МВт несложно. Периодически очищая солнечные панели с помощью набора для чистки солнечных панелей, можно легко поддерживать уровень эффективности солнечных панелей.

Сколько площади требуется для установки солнечной станции мощностью 1 МВт?

Обычно для солнечной электростанции мощностью 1 кВт требуется площадь 6 квадратных метров. Соответственно, если вы хотите установить солнечную фотоэлектрическую электростанцию ​​мощностью 1 МВт, потребуется площадь 6000 квадратных метров (+ теневой зазор).

Как мы можем установить солнечную фотоэлектрическую установку мощностью 1 МВт?

Для установки солнечной электростанции мощностью 1 МВт вы можете связаться с нами.

.

Компания солнечной энергии | Панели солнечных батарей

Страна - Выберите страну -AfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua & BarbudaArgentinaArmeniaArubaAscension IslandAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia & HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCanary IslandsCape VerdeCaribbean NetherlandsCayman IslandsCentral African RepublicCeuta & MelillaChadChileChinaChristmas IslandClipperton IslandCocos (Килинг) IslandsColombiaComorosCongo - BrazzavilleCongo - KinshasaCook IslandsCosta RicaCôte d'IvoireCroatiaCubaCuraçaoCyprusCzechiaDenmarkDiego GarciaDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEswatiniEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южные территорииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГуат emalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard & McDonald IslandsHondurasHong Kong SAR ChinaHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle из ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacao SAR ChinaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmar (Бирма) NamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorth MacedoniaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestinian TerritoriesPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairn IslandsPolandPortugalPuerto RicoQatarRéunionRomaniaRussiaRwandaSamoaSan MarinoSão Tomé & PríncipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия и Южные Сандвичевы IslandsSouth KoreaSo uth Судан, Испания, Шри-Ланка, St.BarthélemySt. HelenaSt. Китс и Невис LuciaSt. MartinSt. Pierre & MiquelonSt. Винсент и ГренадиныСуданСуринамШпицберген и Ян-МайенШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТристан-да-КуньяТунисТурцияТуркменистанТурки и Кавалерия Внешние острова Виргинские островаУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыУругвайУзбекистанВануатуВатиканВенесуэлаВьетнамWallis & am

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.