ABLOY-FIRE.RU - Надежная автоматика для противопожарных дверей

Abloy
Главная
Продукция
Решения для одностворчатых дверей
Решения для двустворчатых дверей
Где купить


Новости

21.05.07 - Итоги семинара "Системы автоматического закрывания противопожарных дверей Abloy"

10.05.07 - Первый в России семинар: "Системы автоматического закрывания противопожарных дверей Abloy"

30.04.07 - Открыт новый сайт "Надежная автоматика для противопожарных дверей Abloy"

Температура плавления пенополистирола


что это, где применяется, технические характеристики ЭПП, размеры, плотность

Экструдированный пенополистирол имеет ряд положительных характеристик, поэтому сейчас используется для выполнения многих строительных задач. Прежде всего ЭППС – утеплитель. Простота монтажа и длительный срок службы сделали материал незаменимым при обустройстве утеплительных пирогов на фундаментах, стенах и чердаках зданий разного назначения.

Что такое экструдированный полистирол. Отличия ЭПП от обычного полистирола и пенопласта

ЭПП, пенопласт и пенополистирол относятся к категории синтетических полимеров. Технология их производства обеспечивает высокие качественные характеристики. Пенопласт изготавливается из полимерного состава. Получающиеся гранулы достигают 3-5 мм в диаметре. После этого они спрессовываются с использованием клеевого состава.

Рассматривая, что такое пенополистирол, следует учесть, что это материал, который имеет равномерную структуру, включающую зернистые ячейки не более 0,1-0,2 мм. Для получения материала смешиваются гранулы полистирола со специальными вспенивающими агентами (ими могут выступать двуокись углерода или смесь фреонов). После этого под давлением формируются листы. После просушки они могут быть использованы в строительстве.

Пенопласт и полистирол имеют немало общего с экструдированным пенополистиролом, но последний отличается более сложной технологией производства. При изготовлении материала сначала гранулы оплавляются до состояния однородной массы. После этого в состав вводятся специальные присадки и дополнительные компоненты, благодаря чему вещество приобретает вязко-текучее состояние. Благодаря этому получается материал, имеющий неразрывные межмолекулярные связи.

Поры в готовых плитах отсутствуют, а ячейки, присутствующие в этом материале, заполнены газом. Благодаря такой структуре паропроницаемость материала крайне низка. Плотность экструдированного пенополистирола намного больше, чем у пенопласта и полистирола, поэтому он отличается лучшими эксплуатационными характеристиками.

Достоинства и недостатки

Плиты ЭППС имеют массу преимуществ, но данному материалу свойственны и некоторые недостатки. К плюсам относятся:

  • низкая теплопроводность;
  • водонепроницаемость;
  • способность выдерживать деформационные нагрузки;
  • повышенная жесткость;
  • устойчивость к перепадам температуры;
  • длительный срок использования;
  • небольшой вес;
  • экологичность.

Толщина экструдированного пенополистирола небольшая, что упрощает формирование утеплительных пирогов. У данного утеплителя есть и ряд недостатков. Нужно учитывать, что ЭПП стоит намного дороже, чем многие другие материалы, предназначенные для утепления поверхностей. Кроме того, температура горения данного материала крайне высока. Плиты требуют покрытия штукатуркой, т. к. ЭПП может разрушаться под воздействием прямых солнечных лучей. Также следует учитывать, что плиты могут разрушаться под действием некоторых растворителей.

Этот утеплитель достаточно жесткий, поэтому грызуны редко повреждают его. В то же время мыши могут проделывать ходы в плитах. Водонепроницаемость плит ЭПП в некоторых случаях может быть большим минусом. При использовании материала для утепления стен деревянного дома под сформированным пирогом может возникать плесень.

Задержка паров возле стен может поспособствовать появлению сырости и затхлого запаха. Кроме того, плиты при разогреве до температуры выше 75°C могут выделять вещества, способные негативным образом отражаться на состоянии здоровья человека.

Область применения

Этот строительный материал может использоваться при выполнении многих строительных задач. Есть специальный ЭПП для пола (укладывается под ламинат, линолеум и паркет). Применение данных плит допустимо даже при обустройстве систем теплого пола. Кроме того, ЭПП благодаря своей низкой теплопроводности часто используется при производстве сэндвич-панелей.

Применение этого материала допустимо при утеплении стен и крыш, для формирования отмостки. Плиты часто используются для гидроизоляции фундамента.

Этот материал может применяться в качестве наполнителя, когда требуется возведение кольцевидной кирпичной кладки, отличающейся высокими теплоизоляционными свойствами. Ограничено эти плиты можно использовать для формирования теплоизоляционного пирога, защищающего канализационные и водопроводные коммуникации от перемерзания.

Правила выбора материала

Для того чтобы приобрести плиты пенополистирола, которые будут отличаться длительным сроком службы и безопасностью для людей, нужно обратить внимание на ряд характеристик. При выборе утеплителя в первую очередь следует посмотреть на индекс, указанный на упаковке. Если данный показатель меньше 28, лучше отказаться от приобретения такого товара. Лучше всего приобретать ЭПП с индексом выше 40.

Кроме того, на упаковке обязательно должна быть представлена информация о том, подходит ли материал для утепления фасада дома, или он может быть использован только для внутренней отделки. Кроме того, желательно выбирать материал, из самозатухающих полимеров.

При приобретении ЭПП нужно обратить внимание на соответствие изделий ГОСТам, т.к. некоторые производители отмечают только технические условия. Отсутствие указания о соответствии ГОСТам может свидетельствовать о том, что материал отличается низкой плотностью, т.е. с худшими эксплуатационными характеристиками.

Для того чтобы проверить качество продукции, следует отломить небольшой кусочек плиты и тщательно осмотреть место излома. Если на нем видны небольшие шарики, это свидетельствует, что продукт произведен с нарушением технологии. У качественных плит на изломе будут видны многогранники правильной формы.

Технические характеристики экструдированного пенополистирола

Перед тем как приобрести такой материал, как экструдированный пенополистирол, технические характеристики следует изучить тщательно. Это позволит приобрести наиболее качественный материал. Изготовленный с соблюдением технологии строительный материал отличается универсальными характеристиками, что расширяет сферу его применения.

Маркировка. Марки производителя

При покупке плит обязательно нужно обращать внимание на маркировку. Должны быть указаны технические характеристики, размеры и габариты плит, а также особые сведения, касающиеся эксплуатации. Кроме того, обязательно должна быть представлена информация о производителе. Наиболее часто на рынке встречаются следующие марки экструдированного пенополистирола:

  1. Крауф.
  2. Европлекс.
  3. Стирекс.
  4. Пеноплекс.
  5. Техноплекс.
  6. УРСА.
  7. Технониколь.
  8. Примаплекс.

Многие производители выпускают не только стандартные панели, но и ЭПП со специфическими характеристиками, позволяющими использовать материал в тех или иных экстремальных условиях.

Форма выпуска. Размеры

Данный строительный материал выпускается в форме листов. Стандартные размеры листа составляют 600х1200 мм, 600х1250мм, 600х2400мм. Толщина может быть от 20 до 150 мм. Некоторые производители выпускают плиты ЭПП, отличающиеся нестандартными размерами.

Теплопроводность

Коэффициент теплопроводности экструдированного пенополистирола составляет от 0,03 до 0,032 Вт/мС. Данные показатели указывают на то, что этот материал отличается низкой способностью проводить тепло. Благодаря этому все тепло в помещении сохраняется, что позволяет снизить расходы на отопление в зимний период.

Низкая теплопроводность позволяет снизить степень нагрева поверхностей в зной. Низкая теплопроводность экструдированного полистирола позволяет эффективно применять его для обустройства теплоизоляционных пирогов.

Паропроницаемость и поглощение влаги

Чем меньше способность материала впитывать влагу и пары, тем выше его долговечность и ниже теплопроводность. Коэффициент водопоглощения этого материалов составляет от 0,2 до 0,5%. Эти показатели значат, что при контакте с парами и жидкостью впитывания влаги не происходит.

Прочности

Плиты пенополистирола могут иметь показатель прочности от 0,15 до 0,45 МПа. Это достаточно высокий показатель, позволяющий использовать плиты для формирования утеплительного пирога на крыше, полах и фасадах домов, где на материал будет оказываться большое давление и механическое воздействие. Использование плит ЭПП способствует повышению прочности поверхностей. Жесткий утеплительный пирог позволяет снизить риск сильной усадки стен.

Способность поглощать звуки

Плиты пенополистирола отличаются высокой способностью к поглощению звуковых загрязнителей. При правильном обустройстве утеплительного пирога уровень шума в помещении снижается в среднем на 30-45%.

Биологическая устойчивость

В этом материале почти нет пор, через которые внутрь могут проникать кислород и вода, поэтому его поражение грибком и болезнетворными бактериями невозможно. Кроме того, эти плиты не могут служить питательной средой для микроорганизмов.

Экологичность

При использовании вне помещения данный стройматериал не может нанести людям никакого вреда (за исключением случаев воспламенения). При использовании пенополистирола в качестве утеплителя внутри дома люди находятся в непосредственном контакте с материалом, сразу возникает вопрос, может ли быть нанесен вред здоровью в данном случае.

Полностью разобраться в данном вопросе нелегко, так как не было проведено длительных исследований, позволяющих точно сказать, что через 5-10 лет из плит начнут выделяться вредные испарения. Утеплитель может вступать в контакт с некоторыми реагентами бытовой химии.

Есть также данные, что при воздействии температур выше 75°C материал может начать выделять вредные пары. Химикаты, попавшие в воздух из пенополистирола, являются жирорастворимыми.

Степень огнестойкости

Температура плавления данного утеплителя составляет около 80°C. Большинство разновидностей этого утеплителя чрезвычайно пожароопасны. Температура горения этого вещества превышает 1100°C. Помимо всего прочего, нужно учитывать длительность горения пенополистирола. Отделанная этим утеплителем поверхность может гореть более 40 минут.

Во время горения плит выделяется много ядовитых газов, в т.ч. метанол, аммиак, окись углерода, оксид азота, формальдегид, стирол, оксид углерода и др.

Высокая горючесть и выделение смеси ядовитых газов, выбрасываемых при воспламенении данного утеплителя, не оставляет шансов на спасение людям, находящимся в непосредственной близости от очага возгорания.

Чего боится пенополистирол?

Этот стройматериал может быстро разрушиться под воздействием прямых солнечных лучей. Нужно учитывать, что он не отличается высокой устойчивостью к действию агрессивных химических реагентов и моющих веществ. При таких контактах может не только происходить разрушение утеплителя, но и выделение вредных паров. Материал не отличается высокой устойчивостью к воздействию высоких температур.

Часто задаваемые вопросы

Молекулы полистирола, применяемого при производстве теплоизоляции ПЕНОПЛЭКС®, состоят только из атомов водорода и углерода, поэтому материал полностью экологичен и безопасен для человека. Полистирол, из которого производится теплоизоляция ПЕНОПЛЭКС®, также используется для изготовления детских игрушек, одноразовой посуды, пищевой упаковки, медицинских товаров и т.д. Предметы из полистирола каждый день окружают нас в повседневной жизни: детали холодильников, трубочки для коктейлей, упаковка для яиц, баночки для йогурта и многое, многое другое.

ПЕНОПЛЭКС® является экологичным утеплителем и не содержит мелких волокон, пыли, фенолформальдегидных смол, сажи и шлаков. Данный материал может применяться в качестве теплоизоляции для внутреннего и наружного утепления ограждающих конструкций жилых, общественных, сельскохозяйственных и производственных зданий и сооружений, а также для наружной изоляции при строительстве объектов хоз-питьевого водоснабжения и канализации.

По результатам санитарно-эпидемиологической экспертизы продукция ПЛИТЫ ПОЛИСТИРОЛЬНЫЕ ВСПЕНЕННЫЕ ЭКСТРУЗИОННЫЕ ПЕНОПЛЭКС, произведенные по ТУ 5767-006-56925804-2007 и ТУ 5767-006-54349294-2014, соответствуют установленным требованиям.

разбираемся в тонкостях маркировки пенополистирола — ТК Стройресурс

Начнем, как говорится, сначала. Сам термин “пенопласт” никогда не применяется в строительных нормативах и документах, единственно правильное название привычного материала - пенополистирол. Это разговорное и привычное многим название, которое давно уже вошло в обиход. Своему “правильному имени” он обязан вспенивающимся гранулам пенополистирола, из которых изготавливается.

В связи с тем, что несколько лет назад были полностью переработаны государственные стандарты по производству и маркировки пенопласта, у некоторых наших клиентов возникают вопрос: “Какой пенопласт выбрать?”.

Чем отличается ППС от ПСБ-С?

На самом деле ничем, если говорить конкретно о материале. И та, и другая маркировка указывают на то, что это привычный всем нам пенополистирол белого цвета.

ПСБ-С - это старая маркировка пенополистирола: ПС- пенополистирол, Б - беспрессованный метод производства, С - самозатухающийся.

ППС -ПеноПолиСтирол, так пенопласт маркируется по новым правилам.


В чем разница и зачем были заведены новые ГОСТы?

В маркировке пенопласта после букв ППС или ПСБ-С идут цифры, например ППС 25 или ПСБ-С 25. Эти числовые значения указывают на плотность материала. Отличие старой маркировки от новой заключается в том, что по предыдущим стандартам были разрешены отклонения от значения на 10 кг/м3.

Например, фактическая плотность пенопласта ПСБ-С 25 могла быть и чаще всего бывала на 25 кг/м3, а 15-16 кг/м3. Такая маркировка создавала путаницу, а потребитель легко мог ошибиться при выборе материала. По актуальному ГОСТу фактическая плотность материала должна полностью соответствовать маркировке.


Что обозначает буква “Ф” в маркировке пенополистирола, например, ППС 16 Ф?

Пенополистирол - один из самых популярных материалов для утепления декоративных штукатурных фасадов. Пенопласт недорогой, легкий, удобный в монтаже, долговечный и надежный материал. для утепления штукатурных фасадов минимальная плотность пенополистирола должна быть 16 кг/м3, но это не единственная характеристика, которая имеет значение. Требования к утеплителю для штукатурных фасадов выше, чем для других конструкций, чтобы им соответствовать производители используют специальные добавки при изготовлении материала.


Роль специальных добавок в фасадный пенопласт:

Снижают время самостоятельного горения: у обычного пенополистирола эти 4 секунды, а у фасадного 1 секунда.

Повышают прочность на сжатие на 15% в сравнении с аналогичным обычным пенополистиролом той же плотности

Уменьшают водопоглощение с 4% до 1%.

Такой материал и маркируют с буквой “Ф”. Если Вам нужен пенополистирол для системы тонкослойного штукатурного фасада, то оптимальное решение с современной маркировкой - это ППС 16 Ф, который производится в разных толщинах от 20 мм, а стандартный размер листа 1000 х 1000 мм.

Что такое ЭППС?

Маркировка ЭППС не имеет прямого отношения к пенополистиролу, так обозначается экструдированный пенополистирол. Это абсолютно другой материал, который объединяет с пенопластом только сырье для производства. Сам же процесс изготовления, как и характеристики материала, принципиально другие. Экструдированный пенополистирол также часто сокращенно называют ХПС или XPS, это современный вид теплоизоляции с очень низкими показателями по влагопоглощению и теплопроводности.

Подробнее про экструдированный пенополистирол Вы можете прочитать в другой нашей статье: Экструдированный пенополистирол: преимущества, характеристики, область применения


Полистирол | Poliamid.ru

Полистирол

Сырье и марки
Производители
Рейтинг производителей полистирола
Полистирольные изделия и продукция
Оборудование для получения и переработки полистирола
Книги и журналы о полистиролах
Фотографии
Видео
Процесс производства полистирола
Исторические факты
Перспективы и прогнозы развития
Краткие характеристики и свойства:

Полистирол получают полимеризацией стирола в массе (ПСМ), в эмульсии (ПСЭ) и реже-в суспензии (С). Средняя молекулярная масса (ММ) =80-100тысяч в зависимости от способа получения.
Формула полистирола:
[Ch3-CH-]n
          | 
       C6H5
Полистирол и материалы на его основе относятся к конструкционным полимерным материалам. Они характеризуются достаточно высокой прочностью, жесткостью, высокой размерной стабильностью, отличными декоративными свойствами. Полистирол - аморфный полимер, характеризующийся высокой прозрачностью (светопропускание до 90%).  
Полистирол (ПС, бакелит, вестирон, стирон, фостарен,  эдистер и др.). Плотность 1,04-1,05 г/см3,  tразм 82-95 С. Полистирол растворяется в стироле и ароматических углеводородах, кетонах. Полистирол  не растворяется в воде, спиртах, слабых растворах кислот, щелочей. Модуль при изгибе 2700-3200 МПа. Теплопроводность 0,08-0,12 Вт/(м*К). Ударная вязкость  по Шарпи  с надрезом  1,5-2 кДж/м2. Полистирол склонен к растрескиванию. Температура самовоспламенения 440 С. КПВ пылевоздушной смеси 25-27,5 г/м3.Полистирол хрупок, стоек к щелочам и ряду кислот, к маслам, легко окрашивается красителями, не теряя прозрачности, имеет высокие диэлектрические свойства. Полистирол не токсичен, допущен к контакту с пищевыми продуктами и к использованию в медико - биологической технике.
     УПС (ударопрочный полистирол) получают привитой сополимеризацией стинола с полибутадиеновыми или бутадиенстирольными каучуками. Ударопрочный полистирол (УП, каринекс, люстерекс, стернит, стирон, хостирен идр.)Структурно УПС представляет собой трехфазную систему, состоящую из ПС (полистирола), гель Фракии привитого сополимера и каучука с привитым стиролом в виде частиц размером до 15 мкм, равномерно распределенным по объему УПС. Несмотря на низкую молекулярную массу матричного полистирола (70-100 тыс.), присутствие каучука существенно замедляет рост микротрещин, что и повышает прочность материала (табл. 1).
     В марке УПС указывается метод синтеза (М, С), цифровое обозначение ударной вязкости (две первые цифры) и десятикратное значение содержания остаточного мономера. Кроме того, в марку могут включать букву, обозначающую предпочтительный способ переработки. Например, УПМ-0703 Э - ударопрочный полистирол, полученный полимеризацией в массе; его ударная вязкость 7 кДж/м2 , остаточное содержание мономера 0,3%, переработка - экструзией.

Таблица 1.

Основные свойства полистирольных пластиков

Свойства полистирола

ПС

УПС

АБС

МСН

Плотность,  кг/м3

1050

1060

1040

1040

Температура плавления, 0С

190-230

190-230

210-240

205-220

Разрушающее напряжение, МПа, при:

 

 

 

 

       Растяжении

35-40

27-56

36-60

90-100

       Изгибе

55-70

55-60

50-87

-

       Сжатии

80-100

-

46-80

-

Относительное удлинение при разрыве, %

1,0-1,5

1,0-2,0

1,0-3,0

-

Ударная вязкость, кДж/м2

12-20

40-50

80-100

11-18

Твердость по Бринеллю, МПа

150

110

100

170

Теплостойкость по Мартенсу, 0С

60-70

65

86-98

70-72

Диэлектическая проницаемость при 106 Гц

2,5

2,7

2,4-5,0

2,9

Тангенс угла диэлектрических потерб при 106 Гц, х104

2-4

4-8

300

1,8

Удельное объемное электрическое сопротивление, Ом∙м

1015

5∙1013

5∙1013

4∙1014

Электрическая мощность, МВ/м

25-40

-

12-15

24

АБС - пластик является продуктом привитой сополимеризации трех мономеров - акрилонитрила, бутадиена и стирола, причем статический сополимер стирола и акрилонитрила образует жесткую матрицу, в которой распределены частицы каучука размером до 1 мкм. Повышение ударной прочности сопровождается сохранением на высоком уровне основных физико-механических и теплофизических свойств (табл. 1). АБС непрозрачен. Выпускается стабилизированным в виде порошка и гранул. Применяется для изготовления изделий технического назначения.
 В марке АБС первые две цифры означают величину ударной вязкости по Изоду, следующие две - ПТР (показатель текучести расплава), буква в конце марки указывает на метод переработки или на особые свойства. Например, АБС-0809Т характеризуется ударной вязкость - 8 кДж/м2 , ПТР - 9г/10 мин, повышенной теплостойкостью (Т).
 В промышленности используются сополимеры стинола с акрилонитрилом (САН), стинола с метилиетакрилатом (МС) и стинола с метиметакрилатом и акрилонитрилом (МСН).
 Полистирол перерабатывается всеми известными способами. 

Механические свойства полистирола

Полистирол

Разрушающее напряжение , МПа при:

Е, ГПа

растяжении

изгибе

сжатии

ПС

95

60

70

1,2

Механическая стойкость полистиролов к кислотам и растворителям:

Полистирол

Н2SO4

20-60%

HNO3 50%

HCl  до 37%

Ацетон

Этанол

Бензол

Фенол

ПС

3

2

3

1; 2

3

1-3

-

УПС

3

2

3

1; 2

3

1

-

АБС

3

2

3

-

-

-

-

Теплофизические свойства полистиролов:

Полистирол

Теплопроводность, λ, Вт/(м*К)

Теплоемкость, с, кДж/(кг*К)

Температуропроводность, a*107, м2

Средний КЛР (β*105),К-1

ПС

0,09-0,14

1,16-1,3

0,94

6-7

АБС

0,12

1,24

0,9

8-10

 

Температурные характеристики:

Полистирол

Пределы рабочих температур, С

Температура размягчения по Вика

Теплостойкость по Мартенсу

Температура плавления С

верхний

нижний

ПС

65-70

-40

82-105

76-82

160-175

АБС

75-85

-60

99-100

90-104

165-180

Диэлектрическая проницаемость полистиролов:

Полистиро

έ  при  v, Гц

50

103

106

ПС

2,65

2,6

2,6

Показатель возгораемости (К) - безразмерная величина, выражающая отношение количества тепла, выделенного при горении к количеству тепла, затраченному  на поджигание образца материала. Материал с показателем К>0,5 является горючим. Для полистирола показатель К-1,4 материал является горючим

Показатели пожароопасности полистиролов:

Полистиро

Температура, С

Теплота сгорания

 

Тв

Тсв

МДж/кг

Полистирол ПС

345

490

39-41

Особенности горения полистирола и ударопрочного полистирола:
Поведение пламени: Вспыхивает при поджигании, горит легко. Горит и после удаления из пламени.
Окраска пламени: Оранжево-желтое, светящееся.
Характер горения: Горит с образованием большого количества копоти, плавится.
Запах :  Сладковатый цветочный с оттенком запаха бензола. Запах корицы, если уколоть раскаленной иглой. Сладковатый запах стирола.

Краткое описание, методы переработки, основное назначение, качественная оценка свойств полистиролов и специфические особенности

Полистирол блочный, эмульсионный, суспензионный: Более жесткий материал чем  ПЭВД И ПЭНД, с хорошими диэлектрическими свойствами, недостаток хрупкость и низкая теплостойкость. Химическистоек. Для повышения ударной вязкости и теплостойкости используют сополимеризацию стирола с другими мономерами или совмещение его с каучуками. При введении в полистирол порофоров м последующем вспенивании получают пенополистирол, отличающийся высоким тепло и звукоизоляционными свойствами, плавучестью, химической стойкостью и водостойкостью

Методы переработки: Литье под давлением. Пневматическое и вакуумное формование. Экструзия. Штамповка. Прессование. Склейка. Механическая обработка

Основное назначение: Для корпустных деталий приборов, ридиоэлектронной аппаратуры, изоляторов, крупногабаритных деталей холодильников, внутренней отделки самолетов. Пенополистрирол для тепло и звукоизоляции в строительстве

Полистрирол ударопрочный: Более высокая ударная вязость чем у полистрирола

Методы переработки: Литье под давлением. Пневматическое и вакуумное формование. Экструзия. Штамповка. Прессование. Склейка. Механическая обработка

Основное назначение: Для технических изделий и деталей

Модифицированный полистирольный пластик: Высокая ударная вязкость при низких и высоких температурах, повышенная нагревостойкость, стойкость к щелочам и смазочным маслам

Методы переработки: Литье под давлением. Экструзия. Раздувка

Основное назначение: Для крупногабаритных изделий в автомобилестроении и в электротехнике

Опасный материал в строительстве – ПЕНОПОЛИСТИРОЛ

ПЕНОПОЛИСТИРОЛ

Бурное развитие химической промышленности совпало с эпохой "холодной войны". Для новых систем обороны и нападения понадобились адекватные тепло- и звукоизоляционные материалы. Им надлежало отличаться, в частности, экономичностью, простотой в изготовлении, удобством в применении, легкостью, низкой теплопроводностью. Заказ военных был успешно выполнен. Появились полимерные утеплители, в том числе пенополистирол.

Горячеформованный пенополистирол (ГОСТ 15588–86) получил широкое распространение в строительной и упаковочной индустриях. Пенополистирол (ППС) – газонаполненный пенопласт на основе полистирола (ПС). В современных производствах вспенивание ПС  осуществляется в основном за счёт использования высококипящих жидкостей (изопентан, метиленхлорид и др ), которые вводят при полимеризации стирола (С), в полистирольный «бисер». При нагревании например в горячей воде, бисер вспенивается, образуя предвспененные гранулы, которые после сушки и вылёживания спекаются в объёмные блоки при температурах 140-170°С и давлениях 150-200 КГС/см2. Блоки затем режут на нужные размеры. В промышленности используется также экструзионный пенополистирол с непрерывным методом получения (ППС).

Не секрет, что война и комфорт — "вещи несовместные". Поэтому когда материал доказал коммерческую ценность при массовом решении задач энергосбережения в гражданской сфере, полная информация о нем стала опасна для профильного бизнеса.

Поэтому пенопласт, легкий и теплый на ощупь материал, состоящий на 98% состоит из воздуха, подаренный нам полвека назад химиками и названный ими пенополистиролом, широко используют при строительстве разных технологических зданий, жилых домов, панельные стены которых похожи на пирог с химической начинкой или с надетыми на стену из монолитного железобетона с наружной и внутренней стороны термоблоками из вспененного полистирола. Такой дом гордо называют «ТЕРМОДОМ».

Для пропаганды использования пенополистирола в строительстве ему присваивают множество мифов:

Миф первый: Высокие теплоизоляционные свойства.

Теплоизоляторы по критерию теплопроводности. Большинство утеплителей из вспененных пластмасс, как правило, имеют коэффициент теплопроводности 0,035–0,048 Вт/мК при температуре 25°С. Отдельные производители заявляют, что этот показатель достигает значений 0,020 Вт/мК и даже 0,018 Вт/мК. Но вспененным пластмассам присуще водопоглощение. Так гранулированный пенополистирол, изготовленный беспресовым методом увеличивает свое водопоглощение до 350% по массе. Но и это еще не предел. Зафиксированы случаи, когда плиты беспрессового пенополистирола при эксплуатации покрытия с поврежденным гидроизоляционным ковром приобретают влажность до 900%. Понятно, что при таком количестве поглощенной воды, ни о каком нормативном значении коэффициента теплопроводности теплоизоляционного материала и речи быть не может.


В течение часа человек выделяет около 100 г влаги. Если это жилое помещение, то к этому количеству необходимо добавить влагу, появляющуюся при приготовлении пищи, стирке и т.д., в результате чего влажность увеличивается многократно. Поэтому для создания комфортного и здорового микроклимата наружные стены должны «дышать», что означает – обладать хорошей паропроницаемостью. Однако паропроницаемость абсолютно всех вспененных утеплительных материалов, применяемых в строительстве на порядок меньше, чем минераловатных и стекловолоконных утеплителей. Например, коэффициент паропроницания пенополиуретана и пенополистирола равен приблизительно 0,05 мг/мчПа, в то время как у минераловатных изделий – 0,4–0,6 мг/мчПа. Поэтому, как показывают результаты исследований, проведенные франкфуртским Институтом строительной физики и ганноверским Институтом строительной техники, применение в качестве утеплителя пенополистирольных плит уменьшает диффузию водяного пара через наружные стены в среднем на 55–57%. Технический университет в Хельсинки проводил мониторинг параметров микроклимата в санкт-петербургских домах, утепленных пенополистиролом. В этих домах старые, традиционные окна советского изготовления были заменены новыми, современными со стеклопакетами и вентиляционными клапанами, была восстановлена вентиляция, установлена система управления температурой теплоносителя. Однако в первую же зиму относительная влажность воздуха в 70% квартир достигла 80% при температуре воздуха 18°С, а такие условия являются весьма благоприятными для развития грибков.

Миф второй: Долговечный материал.

Это свойство явилось причиной более пристального изучения свойств многих теплоизоляционных материалов, в том числе и пенополистирола. Особенно глубокие исследования были проведены лабораторией профессора А. И. Ананьева в НИИ Строительной Физики (Москва). Поводом к проведению исследований стали результаты вскрытия покрытия подземного торгового комплекса на Манежной площади в Москве, построенного несколько лет назад. При вскрытии покрытия, находящегося в эксплуатации всего два года, было обнаружено значительное разрушение пенополистирольных плит, на которых образовались значительные раковины и трещины. В результате деструкционных процессов толщина некоторых плит уменьшилась 80–14 мм, при этом плотность пенополистирола в зоне самой тонкой части увеличилась более чем в четыре раза – до 120 кг/м3. Приведенное сопротивление теплопередаче теплоизоляционного слоя покрытия в зоне чрезмерной деструкции пенополистирольных плит стало составлять 0,32 кв. м°С/Вт, что отличает его от проектного значения, равного 2,7 кв. м°С/Вт, более чем в восемь раз. Причина столь катастрофического состояния утеплителя заключалась, как показали результаты исследований, в нарушении технологии производства работ и отсутствием учета ряда физических и химических особенностей пенополистирола при проектировании. Этой же лабораторией были проведены исследования беспрессового пенополистирола, эксплуатировавшегося, так сказать, в более ординарных условиях – наружных ограждающих конструкциях зданий. Результаты показали довольно существенное увеличение (0,047–0,05 Вт/м°С) теплопроводности утеплителя.
Высокую сходимость с результатами НИИСФ показывают исследования, проведенные Нижегородским государственным архитектурно-строительным университетом. Полученные там данные показывают, что величина приведенного значения сопротивления теплопередаче наружных стен, утепленных беспрессовым пенополистиролом, уменьшилась в среднем на 49–59%.

Заведующий лабораторией российского НИИ строительной физики, доктор технических наук Александр АНАНЬЕВ и председатель правления Российского общества инженеров строительства (РОИС), доктор технических наук Олег ЛОБОВ зафиксировали случаи, когда за семь-десять лет эксплуатации конструкций втрое снизилась способность пенополистирола держать тепло. Это, по их мнению, происходит потому, что, кроме процесса естественного разрушения, действуют и другие факторы: например, ремонт квартир, неосторожное обращение жильцов с бытовой химией. Плохо переносит пенополистирол и летучие углеводородные соединения (они появляются, когда фасад красят или покрывают гидроизоляцией).

Безоглядное применение полимеров, как утверждает российский профессор Борис БАТАЛИН, сорок лет посвятивший изучению стройматериалов, может привести к тому, что сиюминутная экономия обернется впоследствии многомиллиардными затратами. Доказано, что через 10-15 лет пенополистирол неминуемо постареет, ухудшатся его теплозащитные свойства. А значит, тепла для обогрева домов понадобится вдвое больше.

С этой точки зрения более эффективен экструзионный пенополистирол (ЭППС), который, как показывают результаты моделирования в ВНИИстройполимер, выдерживает 50-летние циклические температурно-влажностные нагрузки, но при условии применения в земляном полотне (подстилка дорожному покрытию) и для утепления подвальных помещений. Косвенно эти данные подтверждают и результаты обследования, выполненные Белорусским национальным техническим университетом. Обследованию были подвергнуты построенные в 1976 г. сооружения, в ограждающих конструкциях которых был использован экструзионный пенополистирол. Для лабораторных исследований были взяты контрольные образцы, результаты изучения которых показали, что утеплитель находится в превосходном состоянии. Подчеркнем, экструзионный пенополистирол применяется на Западе в качестве утеплителя расположенного в земле – в основном под дорожным полотном автомагистралей или искусственных водоемов, т.е. там, где не подвергается воздействию водяного пара.

Миф третий: Экологичный материал.

К материалам на основе полистирола особенно много претензий в связи с выделением вредных веществ. Дело в том, что, во-первых, 100%-ая полимеризация происходит только теоретически. На самом деле этого у полистирола никогда не бывает, процесс полимеризации идет не до конца, на 97–98%; во-вторых, процесс полимеризации обратим, поэтому полимеры постоянно разлагаются под влиянием света, кислорода, озона, воды, механических и ионизирующих воздействий, и особенно под влиянием тепла. Образовывающийся таким образом свободный стирол проникает в помещения, и люди длительное время живут в обстановке, когда в жилой атмосфере есть стирол (пусть концентрации и ниже ПДК). От этих микродоз стирола страдает сердце, особые проблемы возникают у женщин. Стирол оказывает сильное воздействие на печень, вызывая среди прочего и токсический гепатит.

Основная токсикологическая опасность полистирола (ПС) и пенополистирола (ППС) соответственно состоит в том, что ПС относится к равновесным полимерам, которые при обычных условиях эксплуатации подвержены процессу деполимеризации и в результате уже при обычных условиях эксплуатации находится в термодинамическом равновесии со своим высокотоксичным мономером – стиролом (С): ПС n = ПС n-1 + С.

Если термодинамическое равновесие полистирола сдвигается вправо, следовательно, стирол постоянно выделяется в окружающую среду. Наличие термодинамического равновесия полистирола доказано экспериментально. Концентрация С в ПС зависит от температуры (повышение температуры вызывает повышение концентрации С). При температуре 25°С концентрация С в ПС составляет 10,6 Кмолей/м3. Так как один Кмоль ПС составляет 104 грамма, то при 25°С в 1 м3 пенополистирола будет содержаться 104 микрограмм стирола, что очень много с учётом того что величина ПДК (линейной концепции) для развитых стран. ПДК стирола у них составляет 0,002 мг/м3 для воздуха населённых мест и помещений!!!

Исследования в Минске показали, что даже при комнатной температуре образцы систем утепления с тонкослойными штукатурками и теплоизоляцией из пенополистирола отечественного производства исторгают недопустимо много стирола (превышение ПДК — в 3,7–10,1 раза). А при 80 градусах (до такой температуры летом способны нагреваться внешние слои стены) зафиксировано 169-кратное превышение! "Голенький" же образец пенополистирола при тех же 80 градусах выдал стирола в количестве 525 ПДК.

Пенопласт также подвергается выветриванию, при котором в малых концентрациях возникают газосодержащие смеси. Если они долго воздействуют на организм ребенка или больного человека, то обязательно обеспечат затяжные и непонятные болезни. В западных странах все эти стойкие органические загрязнители (СОЗы) подпадают под запрет специальной Стокгольмской конвенции.

Член-корреспондент Российской академии наук Борис Гусев и его коллеги обнаружили, что за период эксплуатации разлагается до 10–15% пенополистирола, притом разложившаяся часть — на 65% стирол. А он имеет повышенные кумулятивные свойства — накапливается в печени, но не выводится. Значит, считают ученые, надо уменьшить ПДК стирола, выделяющегося в жилье, раз в 600. Выходит, применять это вещество в жилищной сфере нельзя вообще.

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Предельно допустима концентрация (ПДК)

Говоря о таком параметре, как ПДК необходимо упомянуть, что существуют две концепции оценки влияния вредных веществ на организм человека – пороговая и линейная. В пороговой концепции утверждается, что снижать концентрации вредных веществ нужно до некоторого уровня (порога), определяемого значением предельно-допустимой концентрации (ПДК). Малые концентрации (ниже уровня ПДК) вредных веществ безвредны. Этой концепции придерживаются в России и странах бывшего СССР. В линейной концепции предполагается, что вредное влияние на человека пропорционально (линейно) зависит от суммарного количества поглощенного вещества, то есть от произведения его концентрации на время. Отсюда вывод: Малые концентрации при длительном потреблении вредны. Этой концепции фактически придерживается ряд стран: США, ФРГ, Канада, Бельгия, Япония и некоторые другие. Переход к линейной концепции вынудит пересмотреть очень многие нормативы. Например, величина ПДК на сернистый ангидрид должна быть уменьшена в 6,2 раза, а на стирол – в 594 (!) раза. Столь низкое требуемое значение ПДК на стирол в помещении вызвано особыми свойствами стирола. Это вещество относится к конденсированным ароматическим соединениям, имеющим в своей молекуле одно или несколько бензольных ядер, и, подобно аналогичным веществам (бензол, бензпирен, безантрацен), имеет повышенные коммулятивные (накопительные) свойства: накапливается в печени и не выводится наружу.

Выводы наших исследователей-экологов весьма категоричны. Во-первых, необходимо пересмотреть нормы ПДК, которые для жилищного строительства должны быть уменьшены в десятки и сотни раз в соответствии с коммулятивными свойствами вредных материалов. Во-вторых, по мнению ученых, среди веществ, содержащихся в строительных материалах, наибольшей степенью коммулятивности обладает стирол, что требует уменьшения ПДК при его использовании в жилищном строительстве до таких минимальных значений, что это равносильно полному запрещению применения продуктов полимеризации стирола в жилищном строительстве вообще.

Но и это еще не все. При окислении стирола кислородом воздуха образуется бензальдегид и формальдегид. При высоких температурах (от 160°С и выше) пенополистирол подвергается интенсивной термоокислительной деструкции разлагаясь в основном до высокотоксичного стирола, сильнейшим образом отравляя окружающую среду и людей, что и имеет место при пожарах в зданиях, утеплённых ППС. Помимо этого, при пожарах ППС плавится и его плав горит, а температура горящего сплава ППС достигает 1100°С, что приводит к разрушению даже мощных металлических конструкций. Именно из-за высокой температуры горения ППС его используют как основной компонент в напалмовых бомбах, используемых, в том числе и для уничтожения бронетехники противника!!! Из-за этих свойств ППС его категорически запретили к применению как утеплителя в железнодорожных вагонах ещё более 15 лет назад. В работах НПО «ВНИИСТРОЙПОЛИМЕР» по санитарно-химической оценке различных строительных конструкций утеплённых ППС, проведённых в 70х..80х годах прошлого века было показано, что ни одна из представленных конструкций, не может быть применена в строительстве жилых зданий. Причиной этого было превышение реального содержания С в воздухе над значением ПДКСС для С. В 90х годах отрицательное заключение получил так называемый пенополистиролбетон, который предполагали заливать в полые конструкции. Превышение концентраций С в 2-4 раза над уровнем ПДКСС.

СПРАВОЧНАЯ ИНФОРМАЦИЯ


Стирол
(винилбензол, фенилэтилен) - непредельный, ароматический углеводород, С6Н5СН=СН2 –бесцветная жидкость со специфическим запахом, плотностью 0,906 г/см3, температура кипения 145,2°С.

Стирол-мономер применяется в производстве полистирола (в т.ч. ударного полистирола и пенополистирола), АБС-пластиков, бута-диен-стирольных каучуков, термоэластопластов, сополимеров с акрилонитрилом, винилхлоридом; сополимеры с дивинилбензолом - сырье для ионообменных смол; реакционноспособный растворитель полиэфирных смол, модификатор алкидных смол.

Вызывает раздражение слизистых оболочек верхних дыхательных путей, головную боль, расстройство центральной и вегетативной нервной системы. Предельно допустимая концентрация - 5 мг/м3 (предельная концепция), и 0,002 мг/м3 (линейная концепция). Стирол отрицательно воздействует на кровь человека, вызывая лейкоз, отрицательно действует на печень, может вызвать токсический гепатит. Особая опасность стирола состоит в том, что он обладает эмбриогенным действием, то есть при длительном воздействии вызывает уродство эмбриона в чреве матери (см. работы профессора Бокова А.Н., в трудах кафедры гигиены и токсикологии полимерных материалов Ростовского мединститута).

Известный факт: большинство молодых женщин, живших на БАМе в передвижных домиках (а их утепляли именно пенополистиролом), потеряли способность к рождению детей. А в Белоруссии в домах, с аналогичным утеплителем дети до 14 лет болеют в пять- шесть раз чаще, чем в обычных домах.

Кроме того, стирол обладает ещё одним опаснейшим свойством – высоким коэффициентом кумулятивности (накапливаемости), то есть ярко выраженной способностью накапливаться (концентрироваться) в организме человека. В доказательство приведём таблицу коэффициентов кумулятивности ряда вредных веществ выделяющихся из полимерных строительных материалов:

Коэффициенты кумулятивности ряда вредных веществ

Вещество

Коэффициент

Кумулятивности

Оксид углерода 0,1195
Диоксид азота 0,1760
Фенол 0,2815
Формальдегид 0,5750
Бензол 0,6330
Стирол 0,7005

Таким образом, даже при содержании стирола в воздухе помещений на уровне ПДКСС (0,002 мг/м3) он будет оказывать сильное токсическое действие на организм человека за счёт кумуляции (накопления).

Полистирол — продукт полимеризации стиро

характеристики и вся правда об утеплителе + Фото и Видео

Отопление квартиры в зимнее время обходится нам ой как недешево, а цены на энергоносители с каждым годом непомерно растут. И очень жаль, когда столь дорого обходящееся тепло бесполезно уходит из квартиры наружу. Причем потери эти просто огромны. Впрочем, есть неплохой способ их снизить: обшивание наружных стен дома пенополистирольными, плитами. Этот знакомый всем полистирол характеристики в плане теплоизоляции имеет весьма примечательные. Но так ли хороши его остальные свойства? Сегодня мы об этом расскажем.

О свойствах пенополистирола – подробно и доступно

О теплопроводности

Пенополистирол представляет собой не что иное, как множество пузырьков воздуха, заключенных в тоненькие оболочки из полистирола. При этом соотношение таково: два процента полистирола, остальные девяносто восемь – воздух.

В результате получается некое подобие твердой пены, отсюда и название – пенополистирол. Воздух герметично запаян внутри пузырьков, благодаря чему материал отлично удерживает тепло. Ведь известно, что воздушная прослойка, находящаяся без движения – великолепный теплоизолятор.

По сравнению с минеральной ватой коэффициент теплопроводности у данного материала ниже. Он может иметь значение от 0,028 до 0,034 ватта на метр на Кельвин. Чем плотнее пенополистирол, тем больше значение его коэффициента теплопроводности. Так, для экструдированного пенополистирола, имеющего плотность 45 килограммов на кубометр, этот параметр составляет 0,03 ватта на метр на Кельвин. При этом имеется в виду, что окружающая температура не выше +75% 0С и не ниже -50 0С.

О паропроницаемости и поглощении влаги

Экструдированный пенополистирол имеет нулевую паропроницаемость. А характеристики вспененного пенополистирола, который изготавливается особым образом, иные. Его паропроницаемость варьируется от 0,019 до 0,015 килограмма на метр-час-Паскаль. Это кажется странным, так как, по идее, подобный материал с пенной структурой пар пропускать не способен.

Ответ прост – формовка вспененного пенополистирола производится путем разрезания большого блока на плиты необходимой толщины. Вот и проникает пар через разрезанные вспененные шарики, забираясь внутрь воздушных ячеек. Экструдированный пенополистирол, как правило, не режут, плиты выходят из экструдера уже с заданной толщиной и гладкой поверхностью. Поэтому для проникновения пара этот материал недоступен.

Что касается впитывания влаги, то если погрузить лист вспененного пенополистирола в воду, он впитает ее до 4 процентов. Плотный пенополистирол, изготовленный методом экструзии, останется практически сухим. Он вберет в себя воды в десять раз меньше – всего лишь 0,4 процента.

Видео. Пенополистирол дышит

О прочности

Тут пальма первенства принадлежит экструдированному пенополистиролу, у которого связь между молекулами весьма крепкая. По прочности статического изгиба (от 0,4 до 1 килограмма на квадратный сантиметр) он заметно превосходит рядовой вспененный пенополистирол (его прочность лежит в пределах от 0,02 до 0,2 килограмма на квадратный сантиметр). Поэтому в последнее время вспененного пенополистирола, вырабатывается всё меньше, так как он менее востребован. Метод экструзии позволяет получить более современный материал для изоляции, прочный и влагостойкий.

Чего боится пенополистирол

Пенополистирол никак не реагирует на такие вещества, как сода, мыло и минеральные удобрения. Он не взаимодействует с битумом, цементом и гипсом, известью и асфальтовыми эмульсиями. Нипочем ему и грунтовые воды. А вот скипидар с ацетоном, некоторые марки лаков, а также олифа способны не только повредить, но и полностью растворить этот материал. Растворяется пенополистирол и в большинстве продуктов, получаемых путем перегонки нефти, а также в некоторых спиртах.

Вот только не любит пенопоплистирол (ни вспененный, ни экструдированный) прямых солнечных лучей. Они его разрушают – при постоянном ультрафиолетовом облучении материал становится сначала менее упругим, теряя прочность. После этого дело разрушения довершают снег, дождь и ветер.

Видео. Пенопласт и ацетон - химический опыт

О способности поглощать звуки

Если надо спастись от излишнего шума, пенополистирол стопроцентно не поможет. Ударный шум он несколько приглушить в состоянии, но лишь при условии, что будет проложен достаточно толстым слоем. А вот воздушные шумы, волны которых распространяются по воздуху, пенополистиролу не по зубам. Таковы особенности конструкции и свойства пенополистирола – жестко расположенные ячейки с воздухом внутри оказываются полностью изолированными. Так что для звуковых волн, летящих по воздуху, надо ставить преграды из других материалов.

О биологической устойчивости

Как выяснилось, плесень на пенополистироле жить не способна. Это подтверждено американскими учеными, которые в 2004 году провели ряд лабораторных исследований. Данные работы были заказаны фирмами-производителями пенополистирола из США. Результат их полностью удовлетворил.

Вся правда о безвредности, негорючести и долгом сроке службы

Полистирол способен служить много лет, не теряя своих свойств – испытания показали, что его можно многократно размораживать и замораживать, и качество материала при этом не страдает. Данный материал не подвержен горению, так как в его состав входят специальные вещества – антипирены. Всё это кажется совершенно правильным и неоспоримым, но лишь на первый взгляд. Есть несколько нюансов. О них поговорим далее.

Вопрос экологии

К сожалению, на воздухе пенополистирол окисляется. Причем вспененный пенополистирол, имеющий более рыхлую структуру, сильнее подвержен этому процессу. Экструдированный материал окисляется медленнее, но и его ждет та же участь. Только что уложенный пенополистирол еще и стирол выделяет, так как полная полимеризация материала невозможна на стадии производства. А пока полимеризация не будет завершена, выделение стирола не прекратится.

Производители пытаются оспорить информацию про вредность пенополистирола. Они говорят, что их продукция менее вредна, чем дерево. Имеется в виду выделение деревом вредных веществ при горении. Действительно, при горении пенополистирола образуется двуокись углерода, окись углерода и сажа. Но если пенополистирол нагреть до температуры, превышающей 80 градусов, то происходит выделение паров вредных веществ. В них содержатся пары: стирола, толуола, этилбензола, бензола и оксида углерода. 

Вопрос горючести

На самом деле любой пенополистирол горит. Лукавят производители, заявляя, что он затухает самостоятельно, являясь менее опасным, чем дерево – увы, это не так. Подобное заявление явно противоречит российскому ГОСТу 30244-94, по которому пенопласты по горючести причислены к группам Г3 и Г4 – самым опасным.

Одним из способов извратить факты является эффектное подвешивание пенополистирольной плиты в воздухе, а затем ее поджигание. Для этого на плиту воздействуют снизу зажженной горелкой. Результат говорит сам за себя – выгорает только тот кусочек, который находился в контакте с горелкой, а далее огонь не идет.

Но ведь этот опыт никак не соответствует реальным условиям эксплуатации, и может служить лишь в качестве фокуса. А вот если на плоскость из негорючего материала положить кусок пенополистирола и поджечь, она вовсе не потухнет. Ведь раскаленные капли пенополистиролы, образующиеся при нагревании небольшого кусочка, перенесут огонь на всю его поверхность. Результат не заставит себя ждать – плита сгорит полностью.

Если взять пенополистирол, не включающий в себя антипирены, то его коэффициент образования дыма равен 1048 квадратных метров на килограмм. У пенополистирола с эффектом самозатухания этот показатель больше – 1219 квадратных метров на килограмм. У резины, например, он составляет 850 квадратных метров на килограмм, а у дерева и того меньше – всего 23 квадратных метра на килограмм. Чтобы было понятнее, приведем такие цифры: если задымленность в комнате более 500 квадратных метров на килограмм, то, вытянув руку, можно не увидеть ее пальцев.

Антипирены (чаще всего гексабромциклододексан) добавляют в пенополистирол для увеличения его пожаробезопасности. У нас в стране принято обозначать такой пенополистирол буквой «С». Это должно, по идее, означать, что материал обладает свойством затухать самостоятельно. Но на практике выясняется, что пенополистирол с антипиреном горит ничуть не хуже, чем не содержащий этой добавки. Он лишь загорается хуже, не делая этого самопроизвольно при повышенной температуре. Класс его горючести – Г2, но через несколько лет он превращается в Г3 или Г4 – свойства антипирена со временем ухудшаются.

Однако, следует отметить, что пенополистирол в строительных конструкциях никогда не применяется в открытом виде. Поверх этого материала всегда наносится фасадная штукатурка или монтируется стяжка. Поэтому строительные конструкции, в состав которых входит пенополистирол являются пожаробезопасными. 

Вопрос срока службы

Если правильно эксплуатировать пенополистирол, закрывая его сверху штукатуркой или другим защитно-декоративным слоем, то он прослужит лет 30, не меньше. Правда, на деле всё оказывается не так радужно – то мастера слепят теплоизоляцию наскоро кое-как, то заказчик постарается сэкономить за счет материалов, то неопытный мастер ошибок наделает при монтаже пенополистирольных плит.

Одна из таких ошибок – неправильный расчет толщины утеплителя. Многим кажется, что если взять толстую тридцатисантиметровую плиту пенопласта, то она и прослужит дольше, и в доме теплее будет. Но это не так – материал большой толщины от перепадов температуры пойдет трещинами и волнами, под которые будет проникать холодный воздух. Надо заметить, что в Европе принята норма – утеплять дома снаружи пенополистиролом не более 3,5 сантиметра. толщиной. Это позволяет во время пожара уменьшить опасность отравления.

Как безошибочно выбрать пенополистирол

Пенополистирол является одним из самых популярных строительных материалов. Он легкий, теплый и дешевый, а работать с ним очень просто. Так как спрос велик, то и предложений от производителей появляется всё больше. И каждый из них уверяет, что именно его пенополистирол – самый лучший, а с качеством выше всяких похвал.

1. Теряясь от бесчисленного числа предложений, не спешите покупать материал. Сначала внимательно изучите его параметры. Если вам надо утеплить фасад, берите пенополистирол ПСБ-С, позиционирующийся как самозатухающий. Марка его должна быть не ниже сороковой. А если марка имеет число 25 и менее, то и не смотрите в сторону такого материала – он разве что для упаковки годится, но никак не для строительных работ.

2. При покупке материала проверяйте по каким стандартам он изготовлен. Если производитель изготавливает продукцию не по ГОСТ, а по собственным ТУ, то характеристики материла могут отличаться. Например пенополистирол ПБС-С-40 (сороковой марки) может иметь различную плотность – от 28 до 40 килограммов на кубический метр.

Изготовителю выгодно таким образом вводить покупателя в заблуждение – на производство пенополистирола меньшей плотности уходит меньше средств. Поэтому нельзя ориентироваться лишь на число в названии марки, а надо попросить показать документы подтверждающие технические характеристики пенополистирола.

3. Перед покупкой попробуйте отломить кусочек материала с самого края. Если это окажется низкосортный упаковочный пенопласт, то он разломается с неровным краем, по бокам которого будут видны круглые маленькие шарики. Материал же, полученный методом экструзии, на месте аккуратного разлома имеет правильные многогранники. Линия разлома будет проходить через некоторые из них.

4. Что касается производителей пенополистирола, то лучшими из них являются европейские фирмы «Polimeri Europa», «Nova Chemicals», «Styrochem», «BASF». Не отстают от них и российские компании-производители, такие, например, как «Пеноплэкс» и «Технониколь». Они имеют мощность производства, которой вполне хватает для изготовления пенополистирола весьма высокого качества.

Заключение

Хотя пенополистирол, как выяснилось, горючий материал и выделяет при сильном нагревании вредные вещества, он остается одним из самых востребованных теплоизоляторов. Ведь как утеплитель, пенополистирол имеет массу преимуществ: он самый дешевый, легко режется обычным ножом, почти не впитывает влагу и хорошо держит тепло. Не зря четыре европейских здания из пяти имеют именно пенополистирольное утепление фасада. Причем как жилые дома, так и офисы, и производственные помещения.

Правда, говорить о длительных исследованиях данного материала пока рано – еще и полвека не прошло с начала его использования. Поэтому те, кто говорят о сроке службы пенополистирола более 80 лет, могут подтвердить свои слова только испытаниями в лабораторных условиях. Но им стопроцентно верить не стоит – ведь для того, чтобы получить нужные результаты, можно особые образцы в лабораторию отправить.

Самое главное при эксплуатации пенополистирола во внешней среде – надежно укрыть его от солнечных лучей и атмосферных воздействий. Для этого надо использовать штукатурную смесь, в состав которой входит цемент. Покрытие следует накладывать плотно, не должно остаться ни одного просвета. Иначе крохотный солнечный лучик может со временем полностью разрушить теплоизоляцию.

А вот внутри пенополистирол для утепления применять не стоит, что бы ни утверждали производители. Пусть себе говорят, но ведь в случае пожара их рядом не окажется, а вот продукты горения могут причинить огромный вред, унося здоровье, а порой даже жизни людей. Примером может быть всем известная трагедия в клубе Хромая лошадь, где большинство посетителей просто задохнулись продуктами горения данного утеплителя.

Видео. Пенополистирол - плюсы и минусы

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Экспериментальное исследование и корректировка модели

В этом исследовании сверхлегкий пенополистироловый пенобетон (EFC) был изготовлен методом химического вспенивания, а его теплоизоляционные свойства были измерены переходным методом при различных температурах окружающей среды (от −10 до 40 ° C). C). Затем наблюдали влияние температуры и объемной доли EPS на теплопроводность и плотность EFC в сухом состоянии. В конечном итоге уравнение Ченга – Вачона было модифицировано путем введения температурного параметра.Результаты показали, что теплопроводность EFC уменьшается с увеличением температуры. Также было продемонстрировано, что подходящий объем частиц EPS может не только уменьшить теплопроводность EFC, но также уменьшить влияние температуры на теплопроводность. Теплопроводность EFC при различных температурах была точно предсказана в этом исследовании с использованием предложенной модели.

1. Введение

Пенобетон (FC) - это тип легкого пористого материала на основе цемента с плотностью от 400 кг / м 3 до 1900 кг / м 3 , который широко используется в области строительства, особенно для снижения статической нагрузки конструкций и для сохранения тепла, демпфирования, звукоизоляции и заполнения пор [1].По сравнению с органическими изоляционными материалами ТЭ имеет более высокую прочность, лучшую огнестойкость и долговечность [1–3]. Однако, чтобы соответствовать более высоким требованиям к теплоизоляционным характеристикам, плотность FC следует дополнительно снизить до менее чем примерно 400 кг / м 3 . В соответствующих исследованиях было установлено, что метод химического вспенивания более подходит для сверхлегких ТЭ, чем механическое вспенивание [4–9].

Пенополистирол (EPS) был впервые представлен в качестве легкого заполнителя для бетона Куком в 1973 году [10].Благодаря своей превосходной изоляции и близким пористым свойствам частицы пенополистирола существенно влияют на тепловые характеристики FC. Например, Sayadi et al. [11] добавили регенерированные частицы EPS в FC и обнаружили, что теплопроводность образца FC с объемной долей EPS 82% снизилась на 45%, а плотность - на 62,5%. Видно, что EPS имеет широкие перспективы применения и большую потенциальную ценность в FC [12–14].

Теплопроводность - важный параметр, отражающий способность бетона передавать тепло.Многие исследователи изучали теплопроводность композиционных материалов и выявляли влияние различных факторов на теплопроводность [15]. Температура как внешнее условие оказывает важное влияние на теплопроводность бетона [16–20]. Рахим и др. [21] протестировали теплопроводность трех бетонных материалов на биологической основе при различных температурных условиях (от 10 до 40 ° C) в установившемся состоянии с использованием метода защищенной горячей плиты. Они обнаружили, что теплопроводность бетонных материалов увеличивается с повышением температуры.Тандироглу [22] изучил теплопроводность легкого необработанного бетона на перлитовом заполнителе и установил функции взаимосвязи для теплопроводности, водоцементного отношения, количества перлита по массе и температуры. Предлагаемые эмпирические корреляции теплопроводности применимы в диапазоне температур от -70 до 30 ° C. Ли и др. [23] обсудили общие модели теплопроводности, основанные на экспериментальных данных, и предложили модель прогнозирования теплопроводности FC, но они не смогли учесть влияние внешних факторов окружающей среды на теплопроводность модели, таких как температура.Таким образом, теплопроводность различных типов бетона значительно различается при изменении температуры. В настоящее время теоретические модели теплопроводности ТЭ не учитывают температурные эффекты.

В данном исследовании сверхлегкий пенополистирол пенобетон (EFC) с различным содержанием пенополистирола готовится методом химического вспенивания, а его теплопроводность измеряется при различных температурах окружающей среды (от -10 до 40 ° C). На основе результатов испытаний и существующих моделей теплопроводности была получена модель теплопроводности EFC с поправкой на температуру.

2. Экспериментальные программы
2.1. Сырье и соотношение смеси

Загущенный материал, используемый в этом исследовании, был изготовлен из китайского обычного портландцемента 42,5 и летучей золы класса I. Соответствующие технические показатели для этих двух материалов показаны в таблицах 1 и 2. Добавление летучей золы может оптимизировать структуру пор FC и улучшить его теплоизоляционные характеристики. Кроме того, EPS имеет размер частиц от 2 до 4 мм, кажущуюся плотность 18,8 кг / м 3 и теплопроводность 0.0313 Вт / (м · К). Пенообразователь, использованный в этом тесте, представлял собой раствор перекиси водорода с концентрацией 30%. Стабилизатором служил стеарат кальция. Первоначальным укрепляющим агентом был нитрит натрия, а загустителем - эмульсия сополимера акрилата. Используемая вода была водопроводной. Отношение воды к связующему, содержание пенообразователя и дозировка летучей золы были скорректированы для определения эталонного соотношения смеси, которое показано в таблице 3. Всего было приготовлено 12 испытательных блоков пенобетона с химическим вспениванием EPS путем изменения объемной доли EPS (0% ~ 60%).


Тип цемента Удельная поверхность (м 2 / кг) Время схватывания (мин) Прочность на изгиб (МПа) Прочность на сжатие (МПа)
Начальная установка Окончательная установка 3d 28d 3d 28d

PO 42,5 345,00 150 210 5.0 8,0 16,5 46,2


Химический состав (%) Кажущаяся плотность (кг / м 3 ) Насыпная плотность (кг / м 3 )
SiO 2 Al 2 O 3 Fe 2 O 3 Cao MgO NaO

58 30 4.3 1,5 2,8 3,2 2100 1086


Образцы Цемент (г) Зола уноса ( г) w / b Объем пены (%)

A 1 193 157 0,48 6,3

соотношение w / b: вода-связующее.

2.2. Прибор для испытаний
2.2.1. Тестер теплопроводности

Для теста теплопроводности использовался анализатор термических характеристик ISOMET 2114, произведенный в Словакии (рис. 1). Прибор может быть использован для определения теплопроводности, объемного теплового потока и температуропроводности композитов на основе цемента [24]. Он основан на принципе испытания на переходные процессы, а диапазон измерения температуры составляет 15 ~ + 50 ° C с точностью 1 × 10 -4 Вт / (м · К).Прибор можно проверить с помощью зонда или плоской пластины. В этом тесте используется поверхностный зонд с диапазоном измерения 0,04 ~ 0,3 Вт / (м · К).


2.2.2. Испытательный бокс при высоких и низких температурах

В этом испытании использовался испытательный стенд для моделирования высоких и низких температур, разработанный Северо-восточным сельскохозяйственным университетом. Его основные показатели производительности приведены в таблице 4.


Полезный объем 5 м × 4 м × 2,5 м
Температурный диапазон −45∼ + 60 ° C
Колебания температуры ± (0.05∼0.1) ° C
Мощность нагрева 1500 Вт
Холодопроизводительность 1500 Вт

2.3. Технология приготовления и методика химического вспенивания пенобетона EPS
2.3.1. Технология приготовления

В соответствии с характеристиками пенополистирола и технологией формования химического пенобетона образцы пенополистирола с химическим вспениванием были приготовлены в соответствии со следующим процессом: (a) Частицы пенополистирола были влажными в течение одной минуты с одной третью общая вода.(b) Цемент для смешивания, летучая зола, другие твердые материалы, оставшаяся вода и загуститель смешивали и перемешивали до тех пор, пока смесь не стала однородной. Затем смоченные частицы EPS помещали в смесь и перемешивали в течение одной минуты. Температуру суспензии поддерживали на уровне 25 ° С. (C) Добавляли раствор нитрита натрия. Смесь перемешивали на низкой скорости в течение 30 секунд, а затем перемешивали на высокой скорости в течение 10 секунд. (D) В смесь вливали перекись водорода, и ее перемешивали в течение 10 секунд.(e) Смесь быстро вылили в форму и оставили на 24 часа при 20 ° C. Затем образцы вынимали из формы, когда они имели определенную прочность, и затем осуществляли стандартное отверждение. Бетонный образец показан на рисунках 2 (а) и 2 (б).

2.3.2. Экспериментальные методы

Испытание образцов на плотность в сухом состоянии проводилось в соответствии с китайским стандартом GB / T11969-2008. Измерения проводились после высушивания образцов до постоянного веса. Окружающая среда с постоянной температурой обеспечивалась испытательным боксом при высоких и низких температурах.Теплопроводность образцов проверяли после двухчасового стояния при постоянной температуре. При постоянной температуре теплопроводность полированных образцов с обеих сторон измеряли с помощью анализатора тепловых характеристик. Теплопроводность некоторых образцов EFC при 20 ° C показана в Таблице 5. Из-за неоднородности FC были протестированы три положения лицевой поверхности, и было вычислено среднее значение результатов.


Объемная плотность в сухом состоянии (кг / м 3 ) Пористость (%) Средняя теплопроводность (Вт / (м · К)) Объемная плотность в сухом состоянии (кг / м 3 ) Пористость (%) Средняя теплопроводность (Вт / (м · К))

304 73.47 0,0838 291 73,04 0,0704
366 68,06 0,0926 230 79,93 0,0761
357 68,85 0,0890 0,0921
362 70,07 0,1000 237 79,32 0,0750
336 71.99 0,0810 267 76,70 0,1037

3. Результаты и обсуждение
3.1. Взаимосвязь между объемной плотностью в сухом состоянии и теплопроводностью образцов EFC при различных температурах

Теплопроводность - это основной физический параметр, используемый для характеристики теплопроводности материалов. Механизм теплопроводности у разных веществ разный.Согласно теории теплопередачи [25, 26], свободная подвижность электронов и колебания решетки являются двумя основными независимыми механизмами теплопередачи твердого тела. В основном это упругая волна (или волна решетки), которая, создаваемая колебанием решетки в месте более высокой температуры, вызывает колебание соседней решетки для передачи тепла в неорганических неметаллических твердых материалах. Поскольку бетон состоит в основном из твердых компонентов, механизм теплопередачи каркаса аналогичен механизму передачи тепла твердого тела.Поэтому теплопроводность бетона в первую очередь зависит от плотности материалов. Обычно низкая плотность соответствует низкой теплопроводности [27].

Закон изменения был получен путем подбора результатов испытаний объемной плотности в сухом состоянии и теплопроводности при различных температурах, как показано на рисунке 3. Объемная плотность в сухом состоянии химически вспениваемого пенобетона EPS положительно коррелирует с теплопроводностью.


Данные испытаний были подогнаны для получения соотношения между объемной плотностью в сухом состоянии и теплопроводностью EFC при температуре 0 ° C.Выражение отношения может быть записано как

. Содержание пены и содержание EPS определяют его объемную плотность в сухом состоянии в EFC и влияют на теплопроводность EFC. В тех же условиях количество пор в пористом материале определяет его теплопроводность. Когда количество пор такое же, теплопроводность увеличивается с увеличением размера пор. Однако соединенные поры увеличивают теплопроводность бетона. Кроме того, объемная доля EPS является ключевым фактором, изменяющим объемную плотность FC в сухом состоянии.На рис. 4 представлена ​​кривая влияния объемной доли EPS на объемную плотность FC в сухом состоянии. Согласно Фигуре 4, микропоры не изменились при добавлении небольшого количества частиц EPS до тех пор, пока не было добавлено 10% частиц EPS. В этот момент соотношение крупных пор в образцах показало тенденцию к увеличению, что привело к уменьшению сухой объемной плотности. Однако, когда процент пор с диаметрами, достигающими 200-400 мкм м, был слишком большим, внутренняя структура пор была бы нестабильной, и некоторые большие поры могут быть разрушены.Это привело бы к увеличению сухой объемной плотности образца и, таким образом, повлияло бы на теплопроводность EFC [28].


3.2. Влияние температуры на теплопроводность пенобетона EPS

В этом эксперименте использовались пять температур, а именно -10 ° C, 0 ° C, 20 ° C, 30 ° C и 40 ° C. Эти температуры были использованы для изучения теплоизоляционных характеристик EFC. Теплопроводность FC, смешанного с различным содержанием частиц EPS, была проверена для получения закона изменения теплопроводности FC с различными объемными долями EPS в зависимости от температуры, как показано на рисунке 5.Как видно из рисунка 5, теплопроводность химического пенобетона положительно коррелирует с внешней температурой. При изменении температуры наибольшая амплитуда изменения ТЭ без частиц ЭПС достигла 52%, что свидетельствует о значительном влиянии температуры на теплопроводность ТЭ [29]. Это связано с тем, что теплопроводность FC связана не только с интенсивностью движения частиц в твердой, жидкой и газовой фазах, но и с силами взаимодействия между различными фазами частиц и их пространственным распределением.Из-за большой пористости FC высокая температура может усилить неравномерное движение и столкновение молекул газа в порах. Это усилило бы взаимодействие между различными фазами частиц, тем самым увеличив теплопроводность.


На рисунке 5 показано сравнение с кривой теплопроводности FC без шариков из пенополистирола, другие кривые с шариками из пенополистирола, очевидно, более гладкие и с меньшими наклонами в том же диапазоне температурного градиента. Когда объемное содержание EPS составляло 55%, изменение температуры меньше всего влияло на теплопроводность.Этот результат демонстрирует, что надлежащее количество частиц EPS может не только снизить теплопроводность EFC, но и компенсировать изменения теплопроводности, вызванные изменениями температуры. Этот эффект является основным преимуществом структуры EPS и улучшения им структуры пор FC. Эмпирические корреляции между теплопроводностью ТЭ и температурой при различных объемных долях пенополистирола показаны в таблице 6.

9429 = 0.998

Объемная доля пенополистирола (%) λ = a ( T 2 ) + bT + c R 2

0 λ 0 = −0.000008 T 2 + 0,0008 T + 0,071 R 2 = 0,995
5 λ 5 = −0,00001 T 2 + 0,0749 R 2 = 0,995
20 λ 20 = −0,000001 T 2 + 0,0009 T 000 + 0,0659
55 λ 55 = −0,000009 T 2 + 0,0007 T + 0,0625 R 2 = 0,987

3.3. Влияние содержания пенополистирола на теплопроводность FC при различных температурах

Избыточное содержание пузырьков, введенных в цементную матрицу, вызовет некоторые трудности в формировании бетона.Следовательно, сложно снизить плотность и теплопроводность сверхлегкого ТЭ за счет увеличения количества пенообразователя. В этом исследовании определенная объемная доля частиц пенополистирола была добавлена ​​к химическому вспениванию пенобетона для изменения собственного веса и теплоизоляционных характеристик бетона.

Частицы EPS обладают хорошими тепловыми характеристиками. Влияние объемной доли EPS на теплопроводность FC при различных температурах показано на рисунке 6. Добавление частиц EPS значительно изменило теплопроводность FC.По сравнению с FC без EPS максимальная амплитуда изменения теплопроводности FC уменьшилась на 46% после добавления определенной объемной доли частиц EPS. Согласно рисунку 6, теплопроводность EFC сначала уменьшалась, а затем увеличивалась с увеличением содержания EPS. Это произошло в первую очередь потому, что частицы пенополистирола (98% воздуха и 2% полистирола) имеют внутри множество закрытых пор, которые обладают большим термическим сопротивлением. С увеличением содержания EPS соответственно увеличивалось тепловое сопротивление EFC.Следовательно, его теплопроводность снизилась. Недавние исследования показывают, что при добавлении пенопласта в бетон из пенополистирола пенообразователь создает структуру микропор между гранулами пенополистирола [30]. Однако, когда объемная доля EPS слишком велика, расстояние между частицами EPS будет уменьшаться. Это заставляет окружающую пену собираться вместе и соединяться, образуя более крупные поры. В результате увеличилась внутренняя связная пористость и значительно увеличилась теплопроводность, что даже повлияло на нормальное формование пеной FC.


Как видно из рисунков 4 и 6, результаты показывают, что сверхлегкий пенобетон с химическим вспениванием EPS с плотностью в сухом состоянии менее 300 кг / м 3 и нормальной теплопроводностью от 0,0704 до 0,0767 Вт / (м · К) может быть получен, когда объемная доля EPS составляет 25% ~ 35%. Кроме того, по сравнению с обычным FC, он показал эффективную теплоизоляцию при изменении температуры.

4. Модель теплопроводности с модифицированной температурой для EFC
4.1. Базовая модель теплопроводности пенобетона
4.1.1. Последовательные и параллельные модели

Основной формой передачи тепла внутри бетонных материалов является теплопроводность. Хашин и Штрикман предложили эффективные модели теплопроводности двухфазной системы [31]. Последовательная и параллельная модели основаны на верхнем и нижнем пределах теплопроводности материалов соответственно. В этих моделях частицы пены и пенополистирола используются в качестве дисперсной фазы, а цемент, летучая зола и суспензия используются в качестве непрерывной фазы для расчета теплопроводности бетона.Обычно выражения можно записать в виде следующих уравнений: Серийные модели: Параллельные модели:

4.1.2. Maxwell - Eucken Модель

Модель Максвелла-Ойкена предполагает, что пена состоит из однородных сфер, которые распределены неравномерно и не имеют сил взаимодействия. Более лаконично модель утверждает, что теплообмен не может осуществляться между дисперсными фазами. На этой основе удалось успешно вывести минимальные границы теплопроводности изотропных и макроскопических однородных двухфазных материалов [32].

Когда пена замешивается в бетон, ее форма и распределение будут изменены из-за выдавливания из раствора, но модель учитывает только показатель пористости. Его выражение выглядит следующим образом [32]:

4.1.3. Модифицированная объемная модель для пенобетона

Li рассмотрела объемное содержание пены и предложила модифицированную модель, которая может быть применена к расчету теплопроводности FC путем объединения данных испытаний FC на основе модели теплопроводности Cheng-Vachon [23].Модель предполагает, что в бетонном растворе нет пор, а тепловая конвекция, излучение и контактное сопротивление не учитываются. Он в первую очередь корректирует объемное содержание дисперсной фазы и учитывает влияние сложных факторов, таких как путь теплопередачи и извилистость во время процесса теплопередачи. Эта модель может точно предсказать теплопроводность FC.

Ниже приведены уравнения для модели поправки на объем теплопроводности FC [23]:

Разница в теплопроводности между пеной и цементно-зольным раствором представляется с помощью простого уравнения:

Модифицированный объемное содержание пены можно выразить следующим образом:

.

Что такое пенополистирол? (с иллюстрациями)

Пенополистирол - это пенополистирол, обладающий определенными желательными свойствами благодаря своей структуре. Он необычайно легкий и плавучий, а также хороший изолятор от тепла и звука. Его можно использовать в качестве строительного материала или элемента дизайна, а также можно придать ему множество форм для различных бытовых нужд.

Пенополистирол - хороший теплоизолятор.

В большинстве случаев пенополистирол белого цвета и состоит из небольших соединенных между собой шариков. Он сделан путем объединения химических веществ этилена и бензола, чтобы получить соединение, известное как стирол. Затем стирол обрабатывают другими химическими веществами, которые вызывают полимеризацию молекул стирола или их объединение в длинные цепи. Эта реакция может продолжаться только до определенного момента, а затем прекращается. Получившимся шарикам дают остыть, а затем их очищают.

Пенополистирол технически пригоден для вторичной переработки.

После формирования и очистки бусинки должны быть расширены, что происходит в три основных этапа.Сначала шарики нагревают горячим воздухом или паром до тех пор, пока их плотность не станет трех процентов от первоначальной. Затем шарики охлаждают в течение 24 часов и формуют. Попав внутрь формы, они впрыскиваются паром низкого давления, который еще больше расширяет шарики и сплавляет их. Когда форма остынет, пенополистирол готов к использованию или отгрузке.

Пенополистирол существенно отличается от аналогичного продукта, называемого экструдированным полистиролом.Экструдированный полистирол производится с использованием хлорфторуглеродов (ХФУ), которые, по мнению многих, вредны для баланса озона в атмосфере Земли. Пенополистирол изготавливается без этих соединений, что делает его более безвредным для окружающей среды. Однако оба продукта могут быть переработаны, как и любой пластик.

Еще одно важное преимущество пенополистирола, особенно для таких продуктов, как одноразовые стаканчики, состоит в том, что он очень экономичен.Производство пенополистирола требует гораздо меньше энергии, чем производство альтернатив на бумажной основе. Кроме того, он может производить гораздо меньше отходов, чем бумага. Например, при правильном сжигании из одной тонны (907 кг) полистирольных стаканов образуется только 0,2 унции (5,66 г) золы, тогда как из того же количества бумаги образуется 200 фунтов (90,7 кг) золы.

Также следует отметить, что пенополистирол не подвергается биологическому разложению.Некоторые считают это недостатком, но тот факт, что он химически инертен, делает его стабильным наполнителем, который помогает обеспечить безопасную и гигиеничную рекультивацию полигона. Несмотря на это, преобладающей тенденцией было сокращение объема пенополистирола и его переработка везде, где это возможно.

.

Изоляционные материалы - диапазоны температур

Температурные пределы для некоторых обычно используемых изоляционных материалов:

900 75
Изоляционный материал Диапазон температур
Низкий Высокий
( o C) ( o F) ( o C) ( o F)
Силикат кальция -18 0 650 1200
Ячеистое стекло -260 -450 480 900
Эластомерная пена -55 -70 120 250
Стекловолокно -30 -20 540 1000
Минеральная вата, керамическое волокно 90 049 1200 2200
Минеральная вата, стекло 0 32 250 480
Минеральная вата, камень 0 32 760 1400
Фенольная пена 150 300
Полиизоцианурат, полиизо -180 -290 120 250
Полистирол -50 -60 165
Полиуретан -210 -350 120 250
Вермикулит -272 -459 760 1400

Силикатная изоляция

Неасбестовая изоляционная плита и труба из силиката кальция изоляция с легким весом, низкой теплопроводностью, высокой температурой и химической стойкостью.

Изоляция из ячеистого стекла

Изоляция из ячеистого стекла состоит из битого стекла в сочетании со вспенивающим агентом.

Эти компоненты смешивают, помещают в форму, а затем нагревают до температуры приблизительно 950 o F . В процессе нагрева колотое стекло превращается в жидкость. Разложение вспучивающего агента приведет к расширению смеси и заполнению формы. Смесь создает миллионы связанных, однородных, закрытых ячеек и в конце образует жесткий изоляционный материал.

Целлюлозная изоляция

Целлюлоза изготавливается из измельченной переработанной бумаги, такой как газетная бумага или картон. Он обрабатывается химикатами, чтобы сделать его огнеупорным и устойчивым к насекомым, и наносится в виде насыпи или методом мокрого распыления с помощью машины.

Изоляция из стекловолокна

Стекловолокно - наиболее распространенный тип изоляции. Он сделан из расплавленного стекла, скрученного в микроволокна.

Изоляция из минеральной ваты

Минеральная вата изготавливается из расплавленного стекла, камня, керамического волокна или шлака, которые формуются в волокнистую структуру.Неорганическая порода или шлак являются основными компонентами (обычно 98% ) каменной ваты. Остальные 2% органического вещества обычно представляют собой связующее из термореактивной смолы (клей) и небольшое количество масла.

Полиуретановая изоляция

Полиуретан - это органический полимер, образующийся в результате реакции полиола (спирта с более чем двумя реактивными гидроксильными группами на молекулу) с диизоцианатом или полимерным изоцианатом в присутствии подходящих катализаторов и добавок.

Полиуретаны - это гибкие пенопласты, используемые в матрасах, химически стойких покрытиях, клеях и герметиках, изоляционных материалах для зданий и технических сооружений, таких как теплообменники, охлаждающие трубы и многое другое.

Изоляция из полистирола

Полистирол - отличный изолятор. Его производят двумя способами:

  • Экструзия - в результате получаются мелкие закрытые ячейки, содержащие смесь воздуха и хладагента
  • Формованные или расширенные - получаются крупные закрытые ячейки, содержащие воздух

Экструдированный полистирол, или XPS , представляет собой термопластичный материал с закрытыми ячейками, изготовленный с помощью различных процессов экструзии. В основном изоляция из экструдированного полистирола используется для изоляции зданий и строительства в целом.

Формованный или пенополистирол обычно называют бортовым картоном и имеет более низкое значение R, чем экструдированный полистирол.

Полиизоцианурат (полиизо) Изоляция

Полиизоцианурат или полиизо - это термореактивный тип пластика, пенопласта с закрытыми ячейками, в ячейках которого содержится газ с низкой проводимостью.

.

Как работает переработка полистирола?

Полистирол - одна из самых распространенных форм пластика. Вы видите это в кофейных чашках на вынос и коробках для яиц; это упаковочный материал, используемый для амортизации грузов при транспортировке. Многие называют его пенополистиролом, хотя на самом деле этот термин является торговой маркой жесткого синего утеплителя, производимого Dow Chemical Company. Полистирол - очень универсальный материал, но переработать его не всегда легко.

Термин «полистирол» означает, что пластик получен из стирола, жидкого углеводорода.При нагревании молекулы мономера стирола соединяются в длинные цепи, образуя твердый полимерный материал при охлаждении до комнатной температуры. Этот прозрачный, твердый и хрупкий пластик был разработан на коммерческой основе в Германии в 1930-х годах. Сегодня этот материал используется для изготовления футляров для CD и DVD дисков и пластиковых вилок. В 1941 году ученый Dow Рэй Макинтайр изобрел экструдированный пенополистирол (пенополистирол) - легкий, водостойкий материал, который впервые был использован для изготовления спасательных плотов. Пенополистирол (EPS) - еще один аналогичный вспененный материал, который нашел еще больше применений.

Объявление

Поскольку на 95% состоит из воздуха, EPS является отличным изолятором. Вот почему его используют в охладителях пива и домашней изоляции, и почему горячий кофе в чашке из полистирола не обжигает пальцы. Благодаря легкости EPS идеально подходит для создания плавучести спасательных жилетов и плотов. Его легкость и податливость делают его хорошим упаковочным материалом, добавляя амортизацию, но при этом небольшой вес. Кроме того, EPS не вступает в реакцию с другими материалами и устойчив к нагреванию, поэтому он нашел широкое применение в пищевой промышленности в таких вещах, как лотки для мяса и птицы и коробки, в которых подаются гамбургеры быстрого приготовления.

Однако некоторые из тех же качеств, которые делают полистирол полезным, могут также работать против него, когда дело доходит до переработки. Его легкость означает, что его трудно собирать из контейнеров с бордюром - он часто уносится ветром, превращаясь в мусор. Потому что он громоздкий, его сложно и дорого перевозить. Многие муниципальные программы утилизации не принимают его (некоторые, например, Лос-Анджелес и Торонто).

Одна из проблем переработки пластмасс в целом заключается в том, что вы должны собирать материалы одного и того же типа вместе и сортировать их по коду контейнера для материала - числа, которое обычно находится на дне контейнера, что позволяет легко идентифицировать вид пластика в объекте.Некоторые другие пластмассы - например, 1 (используется для бутылок с газировкой и водой), 2 (стиральный порошок и другие емкости) и 4 (пластиковые пакеты) - легче изолировать. Полистирол под номером 6 представляет больше проблем. В то время как бутылки с водой и содовой относительно чисты, когда их выбрасывают, полистирол, используемый для пищевых продуктов, часто смешивают с бумагой, пищевыми отходами и другими видами пластика, такими как соломинка, которую выбрасывают вместе с чашкой из пенополистирола.

Полистирол, как правило, не может быть переработан на месте, но его необходимо транспортировать на централизованный завод, что увеличивает затраты переработчика и снижает стимул к переработке.Кроме того, переработанный полистирол в большинстве случаев нельзя использовать для продуктов, контактирующих с пищевыми продуктами, из-за проблем со здоровьем, даже если материал обычно стерилизуется в процессе переработки. Вместо этого переработанный пенополистирол можно использовать для создания упаковки или других материалов, но новый пенополистирол всегда необходим для кофейных чашек и тарелок.

Итак, как лучше всего перерабатывать полистирол и почему бактерии когда-нибудь могут сыграть роль в этом процессе? Читай дальше что бы узнать.

.

Styro Ltd | Экологически чистое сырье из полистирола, Огнезащитные материалы, Вторичные материалы, гидропонные фермы | Полистирол ОАЭ, Дубай, Катар, Оман

История пенополистирола (EPS)

Пенополистирол

(EPS) имеет долгую историю развития. Г-н Эдуард Симон выделил вещество из натуральной смолы, однако он не знал, что он открыл. Другой немецкий химик-органик, г-н Герман Штаудингер, осознал, что открытие Саймона, состоящее из длинных цепочек молекул стирола, было пластичным полимером.В 1930 году ученые BASF разработали способ промышленного производства полистирола. Компания Badische Anilin & Soda-Fabrik (BASF) была основана в 1861 году. В 1937 году компания Dow Chemical представила полистирол на рынке США.

Пенополистирол (EPS) - это общий термин для сополимеров полистирола и стирола. Это жесткий пенопласт с пенопластом, полученный из побочных продуктов нефти и природного газа. Сферические шарики смолы подвергаются воздействию пара, в результате чего термопластичный полистирол размягчается и расширяется до 40 раз по сравнению с первоначальным объемом.Каждая полоска полистирола полностью герметична.

Пенополистирол (EPS) производится в широком диапазоне плотностей от 8 до 48 кг / м3, обеспечивая различные физические / механические свойства. Они подходят для различных применений, в которых материал используется для оптимизации его характеристик и прочности.

Характеристики пенополистирола (EPS)

  • EPS - хороший пример рационального использования природных ресурсов - это 95% воздуха.
  • Имеет широкий диапазон температур применения от - 110 градусов до + 110 градусов Макс.Градус Цельсия.
  • Производство и использование пенополистирола не представляет опасности для здоровья или окружающей среды.
  • EPS не повреждает озоновый слой, так как в производственном процессе не используются CFC или HCFC.
  • Процесс преобразования потребляет мало энергии и не приводит к образованию отходов.
  • Использование пенополистирола для теплоизоляции в строительной отрасли способствует значительной экономии на отоплении и охлаждении зданий и резкому сокращению выбросов загрязняющих газов CO² и SO².
  • Упаковка из пенополистирола
  • защищает продукты, помогает сократить количество отходов, а ее легкий вес помогает снизить расход топлива.
  • Упаковка из пенополистирола
  • может напрямую контактировать с пищевыми продуктами, поскольку соответствует всем действующим международным нормам здравоохранения.
  • Грибки и бактерии не могут легко расти на EPS.
  • EPS составляет лишь небольшую часть твердых бытовых отходов (0,1%)
  • Поскольку EPS не разлагается микроорганизмами, он не загрязняет воздух или воду газами или водорастворимыми веществами.
  • ГИГИЕНИЧЕСКАЯ ХАРАКТЕРИСТИКА: поскольку материал инертен, неизменяем и безвреден, он может вступать в прямой контакт с пищевыми продуктами, при этом соблюдаются установленные стандарты здоровья и безопасности.
  • АДАПТАЦИОННОСТЬ: легко адаптируется к любому продукту или любому дизайну.
  • EPS на 100% перерабатывается

Процесс производства пенополистирола (EPS)

На приведенных выше блок-схемах показан процесс производства пенополистирола (EPS) из шариков пенополистирола.На рисунке 1 можно увидеть четыре стадии. Сначала шарики подают в вертикальный резервуар, содержащий мешалку и регулируемый ввод пара. На этом этапе определяется конечная плотность материала.

Регулировка плотности осуществляется путем контроля времени, в течение которого шарики остаются в расширителе, и / или давления в расширителе. Во-вторых, расширенные гранулы хранятся в бункерах на открытом воздухе в течение нескольких часов в качестве стадии сушки. Во время хранения им позволяют достичь температуры окружающей среды.Этот процесс занимает от трех дней до нескольких часов. Этот процесс называется процессом стабилизации, поскольку происходит конденсация вспенивателя и окружающего водяного пара.

В дальнейшем бусины разливаются в формы разных размеров, в зависимости от производителя. Пар впрыскивается из стенок формы через крошечные продольные щели, в которых происходит плавление. Основной продукт из пенополистирола - белый, хотя его можно раскрасить иным способом.

Что такое огнезащитный состав класса STYRO A?

Быть единственным производителем / поставщиком огнестойкого пенополистирола КЛАССА А в Объединенных Арабских Эмиратах - большое достижение.Наш превосходный пенополистирол был протестирован в соответствии с международными стандартами (ASTM E84) согласно стандартному методу испытаний характеристик горения поверхности строительных материалов, и результаты показывают, что мы действительно инвестировали в понимание потребностей наших клиентов и работу с ними для обеспечения высокого качества решения.
При нагревании пенополистирол размягчается и примерно при 150ºC начинает сжиматься. Это продолжается до тех пор, пока он не уменьшится до своей первоначальной плотности перед расширением. Продолжительное нагревание превратит его в жидкость, а затем образуется горючий газ с температурой выше 200 ° C.Этот газ может воспламениться при температуре от 360 ° C до 380 ° C и самовоспламеняется при температуре около 500 ° C. При горении выделяет 40-45 МВт / кг тепла. Такие температуры обычно возникают только при хорошо развитых пожарах. Как и многие другие строительные и упаковочные материалы, пенополистирол следует считать горючим. Его огнестойкость зависит от типа материала и условий его применения. Важно различать два широко используемых сорта EPS. Весь пенополистирол, используемый в строительных и декоративных изделиях, содержит огнезащитный состав, соответствующий стандарту AS 1366, часть 3 - 1992.Антипирен снижает воспламеняемость и распространение пламени по поверхности изделий из пенополистирола до такой степени, что он классифицируется как «антипирен» в соответствии с ASTM E84. При воспламенении пламенем EPS гаснет, как только исчезает пламя зажигания. Воспламеняемость строительных изделий из пенополистирола снижается с помощью поверхностных покрытий, таких как штукатурка, и металлических покрытий, таких как сэндвич-панели. Не огнестойкий пенополистирол, обычно используемый в упаковке, поддерживает горение, и возникающий в результате огонь распространяется со скоростью около 3 см в минуту по поверхности.Это сопоставимо с другими горючими твердыми материалами. EPS не загорается самопроизвольно, и небольшие источники возгорания не воспламенит его.

ВЫБРОСЫ ДЫМА И ОПАСНЫХ ГАЗОВ

Сжигание пенополистирола менее вредно, чем сжигание древесины и многих других широко используемых строительных материалов. Газы, выделяемые при сгорании, представляют собой преимущественно двуокись углерода и окись углерода. Испытания, проведенные в соответствии с ASTM E84, показывают, что уровни опасных газов значительно ниже, чем при сжигании древесины.

«STYRO» полностью занимается переработкой пенополистирола (EPS), производственных отходов и переработкой EPS в другие продукты. Наши перерабатывающие предприятия обслуживают конечных пользователей EPS, строительные площадки и других производителей XPS. Плавленые изделия из пенополистирола химически нейтральны. Их можно без проблем утилизировать. EPS не реагирует с грунтовыми водами и не выделяет газы при сбросе на землю. Благодаря своей легкой ячеистой структуре он способствует аэрации санитарных свалок и полностью сгорает в мусоросжигательных установках.

Самые известные СХЕМЫ ПЕРЕРАБОТКИ / УТИЛИЗАЦИИ EPS

  • Путем плавления
  • Путем гранулирования - переработка и переработка
  • Используя повторно измельченные бусины - для улучшения почвы;
  • Заточка шариков Re - используется для ВОССТАНОВЛЕНИЯ ЭНЕРГИИ
  • Заливка (УТИЛИЗАЦИЯ)

Перерабатывая все отходы производства пенополистирола, практически все отходы пенополистирола, образующиеся на предприятии «STYRO», используются для производства побочных продуктов пенополистирола, таких как куски и гранулы, которые являются сырьем для производства XPS.

Рециклинг и переработка путем гранулирования

Наши грануляторы превращают обрезки пенополистирола в дробленые шарики, в которые добавляется от 1 до 5% первичного сырья в зависимости от качества конечной продукции.

Заточка бусинок для улучшения почвы

«STYRO» EPS сыпучие или переработанные гранулы также могут использоваться для улучшения почвы для свободного дренажа и улучшения аэрации почвы. Его можно использовать в горшках и на плантациях или просто вокруг грядок. Первичные или переработанные шарики идеально подходят для различных сельскохозяйственных целей, поскольку они на 95% состоят из воздуха, поэтому чрезвычайно безопасны и, прежде всего, нетоксичны.Он предлагает экологические преимущества и обладает множеством полезных свойств, таких как легкость, теплоизоляция. Рыхлые шарики «Стиро» УЛУЧШАЮТ ОБЩУЮ ПОРИСТОСТЬ И УДЕРЖИВАНИЕ ВЛАЖНОСТИ почвы ДО БОЛЬШЕГО, что способствует росту корней (росту растений).

Перемолотые шарики, используемые в качестве топлива для рекуперации энергии (применимо только для доизмельчения пенополистирола НЕ ФРЕНДА)

Теплотворная способность EPS NON FR GRADE на килограмм составляет 40 МДж / кг при стандартной плотности использования 15-20 кг / м3. Тепловая энергия, генерируемая в процессе сжигания EPS, может использоваться для производства электроэнергии.

EPS, использующийся на свалках, дает преимущества. Отходы пенополистирола инертны и нетоксичны, поэтому полигон становится более стабильным. EPS аэрирует почву, стимулируя рост растений или мелиорированные участки. EPS не разлагается и не выделяет никаких веществ в грунтовые воды.

Продукты

EPS имеют универсальное применение благодаря своей уникальной природе и физическим свойствам. Его можно использовать в качестве ИЗОЛЯЦИИ, СТРОИТЕЛЬНОГО ЗАПОЛНЕНИЯ, ДЕКОРАЦИИ, а также для различных упаковок и упаковок.

Хранение продуктов из пенополистирола обеспечивает наличие соответствующего противопожарного оборудования и достаточное количество пожарных выходов, которые всегда должны быть свободны. В случае пожара позвоните в пожарную бригаду и немедленно сообщите, что речь идет о EPS [пенополистироле]. Небольшой пожар можно легко потушить на ранних стадиях, если его быстро ликвидировать с помощью воды, CO2, сухого порошка или огнетушителя BCF, при условии, что человек, занимающийся пожаром на ранних стадиях, не подвергается чрезмерному риску.

Огнезащитный материал содержит равномерно распределенный антипирен.. Однако такой материал нельзя рассматривать как негорючий, и необходимо соблюдать соответствующие меры предосторожности. Хранение Храните продукт вдали от огня, высоких температур, электрического оборудования и легковоспламеняющихся материалов, таких как краска или аналогичные материалы,

Все продукты STYRO EPS можно окрашивать красками на водной основе, однако масляные краски можно наносить со специальным защитным покрытием. (Дополнительную информацию см. На странице CPA для специальных покрытий.)

Продукты

STYRO EPS нельзя подвергать воздействию прямого солнечного света, чтобы избежать разложения под воздействием ультрафиолета (УФ).При длительном воздействии прямых солнечных лучей на пенополистироле образуется желтоватая пудровая пленка. Ультрафиолет (УФ) оказывает воздействие на поверхность пенополистирола, которого можно избежать, накрыв его непрозрачной пленкой во время длительного хранения на открытом воздухе. Или хранение в затененном месте. Все продукты STYRO EPS должны храниться в хорошо вентилируемых и затененных складских помещениях, вдали от источников сильного ветра, наводнения и ели

.

Полистирол | химическое соединение | Britannica

Полистирол , твердая, жесткая, блестяще прозрачная синтетическая смола, полученная путем полимеризации стирола. Он широко используется в сфере общественного питания в качестве жестких подносов и контейнеров, одноразовой посуды и вспененных чашек, тарелок и мисок. Полистирол также сополимеризуется или смешивается с другими полимерами, что придает твердость и жесткость ряду важных пластмассовых и резиновых изделий.

полистирол

Упаковка из полистирола.

Acdx

Подробнее по этой теме

основные промышленные полимеры: полистирол (ПС)

Эта жесткая, относительно хрупкая термопластичная смола полимеризуется из стирола (Ch3 = CHC6H5). Стирол, также ...

Стирол получают взаимодействием этилена с бензолом в присутствии хлорида алюминия с образованием этилбензола. Бензольная группа в этом соединении затем дегидрируется с получением фенилэтилена или стирола, прозрачного жидкого углеводорода с химической структурой CH 2 = CHC 6 H 5 .Стирол полимеризуется с использованием радикально-радикальных инициаторов, главным образом, в объемных и суспензионных процессах, хотя также используются растворы и эмульсии. Структуру полимерного повторяющегося звена можно представить как:

Присутствие боковых фенильных (C 6 H 5 ) групп является ключом к свойствам полистирола. Твердый полистирол прозрачен благодаря этим большим кольцевым молекулярным группам, которые предотвращают упаковку полимерных цепей в плотные кристаллические структуры.Кроме того, фенильные кольца ограничивают вращение цепей вокруг углерод-углеродных связей, придавая полимеру заметную жесткость.

Полимеризация стирола известна с 1839 года, когда немецкий фармацевт Эдуард Симон сообщил о его превращении в твердое вещество, позднее названное метастиролом. Еще в 1930 году полимер не нашел коммерческого применения из-за хрупкости и растрескивания (мельчайшее растрескивание), которые были вызваны примесями, которые вызвали сшивание полимерных цепей.К 1937 году американский химик Роберт Дрейсбах и другие сотрудники физической лаборатории Dow Chemical Company получили очищенный мономер стирола путем дегидрирования этилбензола и разработали экспериментальный процесс полимеризации. К 1938 году полистирол производился серийно. Он быстро стал одним из наиболее важных современных пластиков благодаря низкой стоимости производства больших объемов мономера стирола, простоте формования расплавленного полимера в операциях литья под давлением, а также оптическим и физическим свойствам материала.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Пенополистирол ранее изготавливали с помощью хлорфторуглеродных пенообразователей - класса соединений, запрещенных по экологическим причинам. Теперь вспененный пентаном или углекислым газом, полистирол превращается в изоляционные и упаковочные материалы, а также в пищевые контейнеры, такие как чашки для напитков, картонные коробки для яиц, одноразовые тарелки и подносы. К изделиям из твердого полистирола относятся отлитые под давлением столовые приборы, видеокассеты и аудиокассеты, а также футляры для аудиокассет и компакт-дисков.Многие свежие продукты упаковываются в прозрачные полистирольные лотки вакуумного формования из-за высокой газопроницаемости и хорошей паропроницаемости материала. Прозрачные окошки во многих почтовых конвертах сделаны из полистирольной пленки. Кодовый номер переработки пластика полистирола - №6. Продукты из вторичного полистирола обычно расплавляют и повторно используют во вспененной изоляции.

Несмотря на свои выгодные свойства, полистирол хрупкий и легковоспламеняющийся; он также размягчается в кипящей воде и без добавления химических стабилизаторов желтеет при длительном пребывании на солнце.Для уменьшения хрупкости и повышения ударной вязкости более половины всего производимого полистирола смешивается с 5-10% бутадиенового каучука. Эта смесь, подходящая для игрушек и деталей бытовой техники, продается как ударопрочный полистирол (HIPS).

.

Смотрите также

ООО ЛАНДЕФ © 2009 – 2020
105187, Москва, ул. Вольная д. 39, 4 этаж.
Карта сайта, XML.